簡易檢索 / 詳目顯示

研究生: Juwita Herlina Riskawati
Juwita Herlina Riskawati
論文名稱: Characterization of Fluorocarbon Incorporated Graphene Composite Towards Oxygen Doping
Characterization of Fluorocarbon Incorporated Graphene Composite Towards Oxygen Doping
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 氏原真樹
Masaki Ujihara
鄭智嘉
Chih Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 95
中文關鍵詞: Graphene CompositeFluorocarbonOxygen DopingGraphene OxideGeneration 4 (OH) PAMAM DendrimerPentafluoropropionic Acid
外文關鍵詞: Graphene Composite, Fluorocarbon, Oxygen Doping, Graphene Oxide, Generation 4 (OH) PAMAM Dendrimer, Pentafluoropropionic Acid
相關次數: 點閱:409下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    碳氟摻雜石墨烯複合材料應用於生物醫學方面尚未被廣泛探索。在本研究中我們使用具有奈米尺寸的氧化石墨烯(graphene oxide, NGO)、具羥基(-OH)的聚(酰氨基)胺樹枝狀聚合物(OH-terminated poly (amido) amine dendrimer, Den-OH)、五氟丙酸(pentafluoropropionic acid)和氟化聚乙二醇(fluorinated polyethylene glycol, F10H5COOPEG5000)製備出具摻雜碳氟化合物的石墨烯複合材料(NGO/Den(OH)-F)。NGO/Den(OH)-F因藉由F10H5COOPEG5000進行表面官能化進而對其溶解度產生影響。
    氧化石墨烯的保留氧氣的實驗(oxygen retention experiment)顯示出,氧化程度少的氧化石墨烯(GO(1))比氧化程度高的氧化石墨烯具有更好的保留氧氣的能力。同理在GO-F10H5COOPEG5000複合物上也觀察到類似地保留氧氣的趨勢即與氧化程度少的氧化石墨烯-F10H5COOPEG5000複合物比氧化程度高的氧化石墨烯-F10H5COOPEG5000複合物具有更好的保留氧氣的能力。
    然而,GO-F10H5COOPEG5000複合物比只有氧化石墨烯約高出四倍的保留氧氣的能力。由實驗結果我們假設此複合物在氟化區域的保留氧氣因透過范德華相互作用(Van der Waals interaction)使氧化石墨烯上的氧氣吸附更有效。這些實驗結果顯示出F10H5COOPEG5000摻雜GO的複合物可當作氧氣載體材料並應用在活性氧治療(active oxygen therapy)中。


    Abstract

    Biomedical applications of fluorocarbon incorporated-graphene composite remain unexplored and widely opened. Fluorocarbon incorporated- graphene composite was prepared from nano-sized graphene oxide (NGO), OH-terminated poly (amido) amine dendrimer (Den-OH), pentafluoropropionic acid, and fluorinated polyethylene glycol (F_10 H_5 COOPEG_5000). Surface functionalization of NGO/Den(OH)-F by F_10 H_5 COOPEG_5000 gave impact on its solubility.
    The oxygen retention experiment of graphene oxide showed that the less- oxidized graphene oxide (GO (1)) had better ability in retaining oxygen compared to the highly-oxidized graphene oxide. Similar oxygen retention tendency was observed even on the GO -F_10 H_5 COOPEG_5000 complex: The less-oxidized graphene oxide-F_10 H_5 COOPEG_5000 complex had better ability on oxygen retention than the highly-oxidized graphene oxide-F_10 H_5 COOPEG_5000 complex.
    However, the oxygen retention ability of GO -F_10 H_5 COOPEG_5000 complex was about four times higher than that of graphene oxide alone. It should be assumed that the oxygen retention on the fluorinated domains in the complex should be more effective than the oxygen adsorption on oxidized graphene by Van der Waals interaction. These results indicate the F_10 H_5 COOPEG_5000 incorporated graphene oxide (GO) complex can be used as an oxygen-carrier material for active oxygen therapy.

    Table of Content Abstract………………………………………………………………………..,,,,,,,i 摘要……………………………………………………………………………….ii Acknowledgement.……………………………………………………………….iii Table of Content………………………………………………………………..,,,,iv List of Figures…………………………………………………………………......ix List of Tables…………………………………………………………………….xiv Chapter I. General Introduction……………………………………………………1 I. 1. Introduction………………..………………………………………………………..1 I. 1. 1. Graphite Flake………..…………….………………….……………….……1 I. 1. 2. Graphene…….………...………………………………….……………….…2 I. 1. 3. Graphene Oxide….….…......………………..…………….…………….….3 I. 1. 4. G4-(OH)-PAMAM Dendrimer….....……..……….…….….…………….4 I. 1. 5. Pentafluoropropionic Acid.…………….……………….…..…………….4 I. 1. 6. Fluorinated Polyethylene Glycol Derivative……...…..….…………….5 I. 1. 7. N,N’-Dicyclohexylcarbodiimide (DCC)…....…...….…...………...…...6 I. 1. 8. 4-Dimethylaminopyridine (DMAP)…........….……..……...………......6 I. 1. 9. Nano-Composite……….….……………………..………..……..………..7 I. 1. 10. Active Oxygen Therapy.……….………….……………..…..…….……..7 I. 1. 11. Adsorption-Desorption.….…………………………….….………..…....8 I. 2. Objective of The Work…..…………...……………………………………...9 Chapter II. Experimental Section………………………………………………..11 II. 1. Materials……………………………………………………………………11 II. 2. Instruments..…………..……………………………………………………12 v II. 3. Methods…….………………………………………………………………13 II. 3. 1. Preparation of The Nano-Graphene Oxide (NGO) Colloidal Suspension from Commercial Aqueous Graphene Oxide…...…….13 II. 3. 2. Synthesis of The NGO/Den (OH)-F Composite….…………….….14 II. 3. 3. Preparation of The [NGO/Den (OH)]-?10?5??????5000 Mixture……………………………………………………………...18 II. 3. 4. Preparation of The Less Oxidized Graphene Oxide [GO (1)] with Average Particle Size Less than 200 nm from Graphite Flake 4 μm Size…........................................................................................19 II. 3. 5. Preparation of The More Oxidized Graphene Oxide [GO (2)] with Average Particle Size Less Than 200 nm from Graphite Flake 4 μm Size….………...………….……...…………..………………..25 II. 3. 6. Preparation of The [GO (1]-?10?5??????5000 Mixture………...29 II. 3. 7. Preparation of The [GO (2)]- ?10?5??????5000 Mixture…….…31 II. 3. 8. Oxygen Adsorption-Desorption Experiment of The Less Oxidized Graphene Oxide [GO (1)], The More Oxidized Graphene Oxide [GO (2)], The [GO (1)-?10?5??????5000], The [GO (2)- ?10?5??????5000] by Using Thermo Gravimetric Analysis…….32 II. 3. 9. Thermal Decomposition of The Graphite Flake, The Less Oxidized Graphene Oxide [GO (1)], and The More Oxidized Graphene Oxide [GO (2)] by Using Thermo Gravimetric Analysis…......…...….......33 Chapter III. Results and Discussion……………………………………………....34 III. 1. Preparation of The Nano-Graphene Oxide [NGO], The NGO/Den(OH)-F Composite, and The Mixture of [NGO/Den (OH)-F]-F10H5COOPEG5000…34 III. 1. 1. Preparation of The Nano-Graphene Oxide Colloidal Suspension vi from Commercial Aqueous Graphene Oxide………………...….34 III. I. 2. Preparation of The NGO/Den (OH)-F Composite……………..…35 III.1. 3. Preparation of The ?10?5 ???5000……………………………...37 III.1.4. Preparation of The NGO/Den (OH)-F Composite and ?10?5 ???5000 Mixture…………………………………………38 III. 2. Characterization of The Nano-Graphene Oxide [NGO], The NGO/Den (OH)-F Composite, and The Mixture of [NGO/Den (OH)-F]-F10H5COOPEG5000……………………..……………39 III. 2. 1. Characterization of The Nano-Graphene Oxide from Commercial Aqueous Graphene Oxide…….......…………….………………......39 III. 2. 2. Characterization of The NGO/Den (OH)-F Composite Chemical Composition by Using FTIR Instrument……...……………..…..43 III. 2. 3. Characterization The Nano-Graphene Oxide [NGO], [NGO/Den (OH)-F]- ?10?5 ???5000, and NGO/Den (OH)-F Mixed With ?10?5 ???5000 Morphologies by Using Transmission Electron Microscopy……...………………………………..……...45 III. 2 .4. Characterization of The Nano-Graphene Oxide [NGO] and NGO/Den (OH)-F Morphologies by Using Atomic Force Microscopy…………………………….…………………..…….46 III. 2. 5. Characterization of The Nano-Graphene Oxide (NGO), NGO/Den (OH)-F, and NGO/Den (OH)-F Mixed with ?10?5 ???5000 Average Particle Sizes and Zeta Potential Values at Variety of pH……………….………………………………...49 III. 2. 6. Characterization of ?ℎ? ?10?5??????5000 ???????? ???? ....57 III. 3. Preparation of The Less Oxidized Graphene Oxide [GO (1)] and The More vii Oxidized Graphene Oxide [GO (2)] from Graphite Flake (4 μm Diameter Size)…………………………………………………………………......58 III. 3. 1. Preparation of The Less Oxidized Graphene Oxide [GO (1)]….58 III. 3. 2. Preparation of The More Oxidized Graphene Oxide [GO (2)]…60 III. 4. Characterization of The Less Oxidized Graphene Oxide [GO (1)], The More Oxidized Graphene Oxide [GO (2)], The GO (1) Coated with F10H5 PEG5000, and The GO (2) Coated with F10H5 PEG5000……..……..62 III. 4. 1. Characterization of The Less Oxidize Graphene Oxide [GO (1)] and The More Oxidized Graphene Oxide [GO (2)]Particle Sizes..62 III. 4. 2. Characterization of The Less Oxidize Graphene Oxide [GO (1)], The More Oxidized Graphene Oxide [GO (2)], The [GO (1)-?10?5??????5000]and The [GO (2)- ?10?5??????5000] Morphologies by Using Transmission Electron Microscopy……………………………………...……..65 III. 4. 3. Characterization of The Graphite Flake, The Less Oxidized Graphene Oxide [GO (1)] and The More Oxidized Graphene Oxide [GO (2)] Chemical Composition by Using FTIR Spectroscopy….67 III. 4. 4. XRD Analysis of The Graphite Flake, The Less Oxidized Graphene Oxide [GO (1)] and The More Oxidized Graphene Oxide [GO (2)]………………………………………………………....68 III. 4. 5. Themal Decomposition of The Graphite Flake, The Less Oxidized Graphene Oxide [GO (1)], and The More Oxidized Graphene Oxide[GO (2)] by Using Thermo Gravimetric Analysis…..………70 III. 5. Oxygen Adsorption-Desorption Behavior of The Less Oxidized Graphene Oxide [GO (1)], The More Oxidized Graphene Oxide [GO (2)], The viii GO (1) Coated with F10H5 PEG5000, and The GO (2) Coated with F10H5 PEG5000……………………………………………………………72 III. 6. Graph of Oxygen Adsorption-Desorption of The Less Oxidized Graphene Oxide [GO (1)], The More Oxidized Graphene Oxide [GO (2)], The [GO (1) -F10H5 PEG5000] ,and [GO (2) −F10H5 PEG5000]…………………81 III. 7. Nitrogen Adsorption Ability of The [GO (1) - F10H5 PEG5000] as Confirmation of Oxygen Adsorption Characteristic of The Mixture of GO-F10H5 PEG5000 …………………………………………………........85 Chapter IV. Conclusion………………………………………………………......88 Reference………………………………………………………………………....90

    Reference
    [1] "Absorption (Chemistry)". Memidex (Word Net) Dictionary / Thesaurus. Retrieved 2010-11-02.
    [2] Attal, S.; Thiruvengadathan, R.; Regev, O. 2006. Determination of the Concentration of Single-Walled Carbon Nano-Tubes in Aqueous Dispersions Using UV-Visible Absorption Spectroscopy. Anal. Chem, 78, 8098 8104.
    [3] Bitounis, D., Ali-Boucetta, H., Hong, B. H., Min, D.-H., and Kostarelos, K. 2013. Prospects and Challenges of Graphene in Biomedical Applications. Adv. Mater. 25, 2258−2268.
    [4] Bunn, C. W.; Howells, E. R. Nature 1954, 174, 549–551.
    [5] Bussy, C., Ali-Boucetta, H., and Kostarelos, K. 2013. Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Acc. Chem. Res. 46, 692−701. [6] Changqing Liu; Hu. G. 2014. Effect of Nitric Acid Treatment on The Preparation of Graphene Sheets by Supercritical N, N’-Dimethylformamide Exfoliation. Article. Ind. Eng. Chem. Res. 2014, 53, 14310 - 14314. dx. doi. org/10.1021/ie5019707.
    91
    [7] Chaplin, Martin. 2016. “Hofmeister Series”. Water Structure and Science. London South Bank University. Retrieved 2014-09-05. [8] Daniela. C. Marcano,; Kosynkin. D. V.; Berlin. J. M.; Sinitskii. A.; Sun. Z.; Slesarev. A.; Alemany. L. B.; Lu. W.; Tour. J. M. 2010. Improved Synthesis of Graphene Oxide. Article. Vol. 4. No. 8. American Chemical Society.
    [9] Dukhin, S. S; Derjaguin, B. V. 1974. Non Equilibrium Double Layer and Electro-kinetic Phenomena in Surface and Colloid Science; Matijevic, E., Ed., Wiley & Sons: New York, , Vol. 7, pp 297-300. [10] Ferrari, L.; Kaufmann, J.; Winnefeld, F.; Plank, J. (2010). "Interaction of Cement Model Systems with Super Plasticizers Investigated by Atomic Force Microscopy, Zeta Potential, and Adsorption Measurements". Journal of Colloid and Interface Science 347 (1) : 15 - 24. Bib code : 2010 JCIS. 34715F. PMID: 20356605.doi:10.1016/j.jcis.2010.03.005. [11] Fox, Marye Anne; Whitesell, James K. (1995). Organische Chemie: Grundlagen, Mechanismen, Bioorganische Anwendungen. Springer. ISBN 978-3- 86025-249-9.
    [12] "Glossary". The Brown Fields and Land Revitalization Technology Support Center. Retrieved 2009-12-21.
    92
    [13] "Graphene Definition, Meaning – What is Graphene in The British English Dictionary & Thesaurus – Cambridge Dictionaries Online". Cambridge.org.
    [14] Gong, S., et al., 2010. “Liquid Phase Nitration of Benzene Over Supported Ammonium Salt of 12-Molybdophosphoric Acid Catalysts Prepared By Sol–Gel Method”, in Journal of Hazardous Materials, vol 178, 404–408.
    [15] Haszeldine, R. N. J. Chem. Soc. 1949, 285, 6–2861.
    [16] https://asbury.com/technical - presentations-papers/materials - in - depth/natural -flake- graphite.
    [17] http://chm.bris.ac.uk/motm/hemoglobin/hemoglobv.html. [18] https://en.wikipedia.org/wiki/Dimethylformamide [19] https://en.wikipedia.org/wiki/Zeta_potential [20] https://nanocomposix.com/products/zeta-potential-nanoparticle-analysis [21] https://www.sigmaaldrich.com/catalog/product/aldrich/477850?lang=en& Region=TW [22] IUPAC, Compendium of Chemical Terminology, 2nd ed. (The "Gold Book"). 1997. Online Corrected Version : (2006) "Hydrogen Bond".
    93
    [23] Liu, Z., Robinson, J. T., Sun, X. M., and Dai, H. 2008. PEGylated Nano Graphene Oxide for Delivery of Water-Insoluble Cancer Drugs. J. Am. Chem. Soc. 130, 10876−10877. [24] Neises, B.; Steglich, W. 1985. "Esterification of Carboxylic Acids with Dicyclohexylcarbodiimide/4-Dimethylaminopyridine: Tert-Butyl Ethyl Fumarate.” Org. Synth. 63: 183. ; Coll. Vol. 7, p. 93.
    [25] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V; Firsov, A. A. (2004-10-22). "Electric Field Effect in Atomically Thin Carbon Films". Science. 306 (5696) : 666-669. Bibcode : 2004Sci...306. 666N. ISSN 0036-8075. PMID 15499015. arXiv: cond-mat/0410550. doi: 10.1126/science:1102896.
    [26] Haitao Liu, Ryu, S., Chen, Z., Steigerwald, M L., Nuckolls, C., and Brus L. E. 2009. Photochemical Reactivity of Graphene. Department of Chemistry and Columbia University Center for Electronics of Molecular Nanostructures. Columbia University, 3000 Broadway, New York. New York. 10027.
    [27] Reed, B. W.; Sarikaya, M. 2001. Electronic Properties of Carbon Nano-tubes by Transmission Electron Energy-Loss Spectroscopy. Phys. Rev. B, 64, 195404.
    [28] Schwickert, H.; Strobl, G. R.; Kimmig, M. J. Chem. Phys. 1991, 95, 2800–
    2808.
    94
    [29] Shih, C. J., Lin, S., Sharma, R., Strano, M. S., and Blankschtein, D. 2012. Understanding the pH-Dependent Behavior of Graphene Oxide Aqueous Solutions: A Comparative Experimental and Molecular Dynamics Simulation Study. Langmuir 28, 235−241. [30] "The Nobel Prize in Physics 2010". The Nobel Foundation. Retrieved 3rd December 2013. [31] "The Story of Graphene". www.graphene.manchester.ac.uk. The University of Manchester. 10 September 2014. Retrieved 9 October 2014. [32] "This Month in Physics History: October 22, 2004: Discovery of Graphene". APS News. Series II. 18 (9): 2. 2009.
    [33] Ujihara, M. 2016. Toxicity and Environmental Impact of Nano-Materials. Course Material. Graduate Institute of Applied Science and Technology. NTUST.
    [34] Wu, Sheng-Ru. 2012. Characteristics of Hybrids of Graphene Oxide and Dendrimer. Thesis. Graduate Institute of Applied Science and Technology. NTUST. [35] Yang, Z. 2009. “Hofmeister Effects: An Explanation for the Impact of Ionic Liquids on Biocatalysis”. Journal of Biotechnology. 144 (1): 12-22. Doi: 10. 1016/j. biotec. 2009. 04.01. PMID 19409939.
    95
    [36] Zhang, Y. Cremer P.S. 2006. “Interactions Between Macromolecules and Ions: The Hofmeister Series. “Current Opinion in Chemical Biology. 10 (6): 658-63. Doi: 10.1016/j. cbpa. 2006.09.020. PMID 17035073.

    QR CODE