簡易檢索 / 詳目顯示

研究生: 吳宗軒
TZUNG-SHIUAN WU
論文名稱: 具慣質曲面滾動支承應用於隔減震設計之數值分析與試驗驗證
Numerical analysis and experimental verification of concave rolling-type bearings combined with inerter
指導教授: 汪向榮
Shiang-Jung Wang
口試委員: 許丁友
張家銘
楊卓諺
游忠翰
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 199
中文關鍵詞: 曲面滾動支承慣質分析模型性能試驗縮尺與實尺試驗製程機台
外文關鍵詞: concave rolling-type bearing, inerter, analytical model, performance test, scale-down and full-scale test, wafer process equipment
相關次數: 點閱:330下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將曲面滾動支承應用於隔震系統以及調諧質量阻尼器,由於其回復力與位移呈線性關係,因此具有特定頻率且不會受到上部質量影響,使其作為被動控制元件時,能夠擁有更多的設計彈性與空間優勢。然其水平向位移控制性能仍有改善餘地,前人已提出結合慣質機構以及離合器設計之分析模型與數值模擬結果,經數值分析驗證可有效降低水平向位移需求。
    本研究之第一部分,藉由從最單純至前人所提出之機構設計進行性能試驗,成功驗證前人所提出設計概念之可行性,並透過單向簡諧震波試驗結果,觀察到前人提出分析模型之數值模擬結果與實際狀況存在落差。因此,提出更為精確且具實務應用價值之分析模型,以考慮所觀察到的暫態振動行為以及離合器啟動時機延遲現象,並透過試驗與數值模擬結果的比對,以定義之目標函數進一步擬合得到一組參數之分析模型,其在可接受之平均擬合誤差下足以模擬多數的試驗結果。
    本研究之第二部分,將曲面滾動支承應用於調諧質量阻尼器進行可行性試驗,並以三種不同設計進行振動台試驗,包括曲面滾動支承、具慣質曲面滾動支承、以及具離合器慣質曲面滾動支承,以縮尺三層樓剪力屋架為結構模型。當考慮調諧質量阻尼器產生離頻效應之境況時,得出結合慣質機構以及離合器設計能夠在較小的空間需求下,同時實現良好的減震效果。利用第一部分提出的分析模型,以數值模擬進行與試驗結果比對,亦獲得不錯的擬合程度,可作為後續研究之重要參考。
    本研究之第三部分,針對實際製程機台進行振動台試驗,透過試驗初步了解機台與晶舟的動力特性,並採用各種抗震措施進行保護。由試驗結果得之,以曲面滾動隔震設計保護勁度高且不規則的機台以及易損性高的晶舟,無論有無結合慣質機構與離合器設計,均可有效減少振動反應與破壞潛勢,為後續進一步改進機台耐震性能與制定相應策略提供重要參考。


    This study attempts to apply concave rolling-type bearings to passive seismic isolation and tuned mass damper designs. Because of some unique features of the bearings, including linear relation of restoring force and displacement, as well as possessing a constant vibration frequency which is independent of the payload, using the bearings as a passive control device can have more advantages of design flexibility and space utilization. To improve the displacement control performance of the bearings, past relevant studies proposed combinations of the bearings and inerter (or clutch-based inerter). A simple analytical model for the combinations was developed correspondingly and their effectiveness at suppressing displacement was numerically demonstrated in a preliminary manner.
    In this study, first, the practical feasibility of the pure bearings and the bearings combined with inerter is experimentally examined. Significant differences between the test results and numerical predictions to unilateral harmonic excitation are observed, which indicates that some unavoidable phenomena in reality may be overlooked in the previously developed analytical model. Therefore, a refined and practical analytical model is proposed, which takes the observations during the tests, including transient response caused by collision and delay time of clutch switch into consideration. Based on an author-defined objective function and using the test results, a set of coefficients for the refined analytical model are determined. The numerical predictions by the refined analytical model, in general, can have an acceptable agreement with the test results.
    Second, implementation of the pure bearings, the bearings combined with inerter, and the bearings combined with clutch-based inerter as a tuned mass damper is experimentally examined to protect a scale-down three-story structure model on a shake table. Under the condition of having a detuned effect, the test results indicate that the second and third designs can have better control performance at less expense of space utilization than the first one. Adopting the proposed refined analytical model is also capable of reproducing the test results.
    Last, a full-scale facility, inside which a crystal boat is installed, used in the high-tech semiconductor industry is tested on a shake table to further understand its actual dynamic characteristics. In addition, some seismic isolation and energy dissipation strategies, not limited to the pure bearings and the bearings combined with inerter (or clutch-based inerter), are applied. The test results show that whether the inerter mechanism is incorporated or not, applying the bearings can seismically protect such a stiff and irregular facility and such a fragile crystal boat form excessive vibration and damage. The current outcome is helpful to propose some effective and practical strategies to further enhance the seismic performance of relevant facilities and crystal boats.

    摘要 Abstract 致謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究背景與動機 1.2 研究內容 第二章 文獻回顧 2.1 曲(斜)面滾動隔震支承 2.2 具慣質曲(斜)面滾動隔震支承 2.3 離合器(clutch) 2.4 調諧質量阻尼器(TMD) 第三章 機構設計與性能試驗 3.1 機構設計I 3.1.1 橡膠滾軸 3.1.2 齒輪滾軸 3.2 機構設計II 3.2.1 無離合器設計 3.2.2 具離合器設計 3.3 試驗佈置 3.4 試驗規劃 第四章 性能試驗結果與討論 4.1 機構設計I-摩擦係數辨識 4.2 機構設計I-頻率辨識 4.3 機構設計II-無離合器設計 4.4 機構設計II-具離合器設計 4.5 機構設計II-頻率辨識 第五章 分析模型擬合 5.1 分析模型 5.1.1 傳統曲面滾動支承模型 5.1.2 慣質機構模型 5.1.3 振動體模型 5.2 擬合參數 5.3 擬合方法 5.3.1 目標函數 5.3.2 擬合流程 5.4 擬合結果 5.4.1 簡諧震波 5.4.2 地震震波 5.4.3 擬合結果之探討 第六章 縮尺模型減震試驗 6.1 試驗目的 6.2 試驗試體 6.3 試驗佈置 6.4 試驗規劃 6.5 試驗結果與討論 6.6 分析模型擬合 6.6.1 分析模型 6.6.2 擬合結果 第七章 實際機台隔減震試驗 7.1 試驗目的 7.2 試驗試體 7.3 試驗佈置 7.4 試驗規劃 7.5 試驗結果與討論 7.5.1 機台 7.5.2 晶舟 7.5.3 調諧質量阻尼器 7.5.4 隔震系統 第八章 結論與建議 8.1 結論 8.2 建議 附表 附圖 附錄I 曲率半徑150 mm(雙曲面)模型試驗結果 附錄II 其他抗震措施之試驗結果 參考文獻

    1. 內政部營建署, 建築物耐震設計規範及解說. 2011.
    2. Hwang, J., et al., Applicability of seismic protective systems to structures with vibration-sensitive equipment. Journal of Structural Engineering, 2004. 130(11): p. 1676-1684.
    3. Nagarajaiah, S. and S. Xiaohong, Response of base-isolated USC hospital building in Northridge earthquake. Journal of structural engineering, 2000. 126(10): p. 1177-1186.
    4. Sadek, F., et al., A method of estimating the parameters of tuned mass dampers for seismic applications. Earthquake Engineering & Structural Dynamics, 1997. 26(6): p. 617-635.
    5. Wang, S.J., et al., Sloped multi‐roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering & Structural Dynamics, 2014. 43(10): p. 1443-1461.
    6. 賴以安, 由斜面滾動隔震支承平面耦合探討至結合慣質設計之分析試驗研究. 2022, 國立臺灣科技大學營建工程系.
    7. Chen, M.Z., et al., Influence of inerter on natural frequencies of vibration systems. Journal of Sound and Vibration, 2014. 333(7): p. 1874-1887.
    8. Matta, E. and A. De Stefano, Robust design of mass-uncertain rolling-pendulum TMDs for the seismic protection of buildings. Mechanical Systems and Signal Processing, 2009. 23(1): p. 127-147.
    9. Marian, L. and A. Giaralis, Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probabilistic Engineering Mechanics, 2014. 38: p. 156-164.
    10. Bekdaş, G. and S.M. Nigdeli, Mass ratio factor for optimum tuned mass damper strategies. International Journal of Mechanical Sciences, 2013. 71: p. 68-84.
    11. 王聖閔, 具多重控制性能斜面滾動隔震支承之設計、分析與試驗研究. 2021, 國立臺灣科技大學營建工程系.
    12. 宋易霖, 具階段可變斜面及阻尼設計之滾動支承可行性研究. 2020, 國立臺灣科技大學營建工程系.
    13. Wang, S.-J., et al., A generalized analytical model for sloped rolling-type seismic isolators. Engineering Structures, 2017. 138: p. 434-446.
    14. Cilsalar, H. and M.C. Constantinou, Behavior of a spherical deformable rolling seismic isolator for lightweight residential construction. Bulletin of Earthquake Engineering, 2019. 17(7): p. 4321-4345.
    15. Zayas, V.A., S.S. Low, and S.A. Mahin, A simple pendulum technique for achieving seismic isolation. Earthquake spectra, 1990. 6(2): p. 317-333.
    16. Hamidi, M., et al., Seismic isolation of buildings with sliding concave foundation (SCF). Earthquake engineering & structural dynamics, 2003. 32(1): p. 15-29.
    17. Smith, M.C., Synthesis of mechanical networks: the inerter. IEEE Transactions on automatic control, 2002. 47(10): p. 1648-1662.
    18. Lai, Y.-A., S.-J. Wang, and T.-Y. Hsu, Acceleration-Based Design Procedure for Sloped Rolling-Type Bearings with an Added Rotational Inerter. Structural Control and Health Monitoring, 2023. 2023.
    19. Makris, N. and G. Kampas, Seismic protection of structures with supplemental rotational inertia. Journal of Engineering Mechanics, 2016. 142(11): p. 04016089.
    20. Málaga-Chuquitaype, C., C. Menendez-Vicente, and R. Thiers-Moggia, Experimental and numerical assessment of the seismic response of steel structures with clutched inerters. Soil Dynamics and Earthquake Engineering, 2019. 121: p. 200-211.
    21. Connor, J.J., Introduction to Structural Motion Control. First Edition ed. 2002.
    22. Pietrosanti, D., M. De Angelis, and A. Giaralis, Experimental study and numerical modeling of nonlinear dynamic response of SDOF system equipped with tuned mass damper inerter (TMDI) tested on shaking table under harmonic excitation. International Journal of Mechanical Sciences, 2020. 184: p. 105762.
    23. Harvey Jr, P.S. and K.C. Kelly, A review of rolling-type seismic isolation: Historical development and future directions. Engineering Structures, 2016. 125: p. 521-531.
    24. 施敏, 半導體製程概論. 2006.
    25. Jiang, H. and F. Liu, Dynamic modeling and analysis of spur gears considering friction–vibration interactions. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017. 39: p. 4911-4920.
    26. Papageorgiou, C., N.E. Houghton, and M.C. Smith, Experimental testing and analysis of inerter devices. Journal of dynamic systems, measurement, and control, 2009. 131(1).
    27. Scheibe, F. and M.C. Smith, A behavioral approach to play in mechanical networks. SIAM journal on control and optimization, 2009. 47(6): p. 2967-2990.

    無法下載圖示 全文公開日期 2033/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE