簡易檢索 / 詳目顯示

研究生: 郭涵妮
Han-Ni Kuo
論文名稱: 衝擊噴流受橫流影響的流場特性
Flow Characteristics of an Impinging Jet in Crossflow
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 林怡均
Yi-Jiun LIN
許清閔
Ching-Min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 250
中文關鍵詞: 衝擊噴流橫流
外文關鍵詞: jet impingement, crossflow
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用實驗方法對圓管噴流撞擊壁面並受到橫流影響時的流場特性進行研究。在一拖曳式水槽中安裝噴流與壁面設備,改變噴流出口與壁面間的距離對噴口直徑的比值(s/d = 5 - 25)與噴流對橫流速度比(Ru ≡ uj /u∞ = 3 - 58),使用雷射光頁輔助質點軌跡流動可視化技術觀測橫流中衝擊噴流的行為;再以質點影像測速儀量測速度場,轉換成流線,進行流動拓樸分析,並計算渦度及紊流強度。受橫流影響下之衝擊噴流流場,在垂直對稱面呈現三種模態:無衝擊、輕微衝擊及衝擊效應主宰模態。在相同噴流對橫流速度比的條件下,隨著衝擊距離的增加,噴流對壁面的撞擊減弱。當衝擊距離固定時,若速度比增加,噴流對壁面的撞擊影響增強。在衝擊效應主宰模態中,橫流接近衝擊噴流所形成的界面與壁面交界的上游處會產生一至兩顆渦旋(較小的Ru產生一顆渦漩;較大的Ru產生兩顆渦漩)。水平面流場觀察與量測顯示,於無衝擊與輕微衝擊模態時,在噴流出口與壁面之間並無特殊流場結構;但於噴流圓管的下游有渦漩逸放產生。於衝擊效應主宰模態時,在距離壁面較近的水平面會產生馬蹄狀的渦旋;在距離壁面較遠的水平面則無馬蹄狀渦漩產生,於噴流圓管的下游亦有渦漩逸放產生。渦度與紊流強度分佈顯示,於衝擊效應主宰模態時,因橫流對衝擊噴流影響而產生的渦流附近會呈現較大的渦度與紊流強度。


The flow characteristics of an impinging jet in crossflow was studied experimentally in a towing water tank. The water jet flow was provided via a system composed of a pump, a small water tank, a rotameter, a needle valve, and a stainless-steel tube. The wall subject to the impingement of the water jet was an acrylic flat plate installed at a distance under the exit of the water jet. The tube and acrylic plate were linked together and immersed in the water of the towing water tank. The towing motion applied to the tube and flat plate induced the crossflow which would influence the flow field of the impinging jet. Two dominant physical and geometric nondimensional parameters were varied: (1) the jet-to-crossflow velocity ratio (Ru ≡ uj /uc = 3 - 58) and (2) the impingement distance to jet diameter ratio (s/d = 5 - 25). The laser-light sheet particle tracking flow visualization method and particle image velocimetry (PIV) were respectively used to probe the qualitative and quantitative flow characteristics. The velocity vectors, streamlines, topological patterns, vorticity distributions, and turbulence intensities were calculated and analyzed. Three characteristic flow modes: no impingement, slight impingement, and impingement effect dominated modes were observed in the domain of s/d and Ru in the vertical symmetry plane. No specific flow structures were found in the no impingement and slight impingement modes. In the impingement effect dominated mode, one or two vortices might appear in the vertical symmetry plane near the wall around the upstream area of the interface between the jet and the crossflow. These vortices were induced due to the interaction between the impingement of the jet on the wall and the crossflow at mid to high values of Ru. The primary flow feature appeared in the horizontal plane near the wall when the vortices presented was a horseshoe flow structure. The vorticities and turbulence intensities revealed notably high values around the area of the vortices.

摘要 i Abstract ii 致謝 iii 符號索引 vii 表圖索引 viii 第一章 緒論 1 1.1研究動機 1 1.2文獻回顧 1 1.2.1 衝擊噴流 1 1.2.2 受橫流影響之衝擊噴流 1 1.3研究目標 4 第二章 實驗設備、儀器與方法 5 2.1 實驗設備 5 2.1.1 拖曳式水槽 5 2.1.2 圓管與壁面模型 5 2.1.3 直流循環泵浦與浮子式流量計 6 2.2 水槽控制方法 6 2.2.1 馬達控制器 6 2.3 實驗儀器與方法 6 2.3.1 雷射光頁 6 2.3.2 數位相機 7 2.3.3 無線定時快門線 7 2.3.4 質點特性分析 7 2.3.5 質點軌跡流場觀察法(PTFV) 7 2.3.6質點影像速度儀 8 第三章 質點軌跡流場特徵 13 3.1垂直對稱面流場特徵 13 3.1.1上游隨時間演化之流場特徵 13 3.1.2 下游隨時間演化之流場特徵 17 3.1.3 流場特徵模態分區 19 3.2水平面流場特徵 20 3.2.1水平面上游隨時間演化之流場特徵 20 3.2.2水平面下游隨時間演化之流場特徵 23 3.2.3水平面流場特徵模態分區 30 第四章 速度場特性 34 4.1 垂直面速度場特徵 34 4.1.1上游速度向量、流線與分佈 34 4.1.2 上游流場拓樸分析 34 4.1.3 上游渦度分佈 38 4.1.4 上游紊流強度分佈 39 4.1.5 下游速度向量、流線與分佈 41 4.1.6 下游渦度分佈 42 4.1.7下游紊流強度分佈 43 4.1.8軸向速度分佈 44 4.1.9無撞擊模態之軌跡線 44 4.2 水平面速度場特徵 45 4.2.1上游速度向量與流線 45 4.2.2下游速度向量與流線 49 4.2.3上游流場拓樸分析 52 第五章 結論與建議 54 5.1結論 54 5.2建議 55 參考文獻 56  

1. Gauntner, J. W., Livingood, J. N. B., and Hrycak, P., “Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate,” Lewis Research Center Cleveland, Washington, D. C., February 1970.
2. Landreth, C. C., and Adrian, R. J., “Impingement of a low Reynolds number turbulent circular jet onto a flat-plate at normal incidence,” Experiments in Fluid, Vol. 9, No. 1-2, 1990, pp.74-84.
3. Koichi, N., Masanori, S., Keiichi, K., and Kahoru, T., “Turbulence statistics in the stagnation region of an axisymmetric impinging jet flow,” International Journal of Heat and Fluid Flow, Vol. 17, No. 3, 1996, pp. 193-201.
4. Ephraim, J. G., Ibrahim, M. I., and Shanmugam, M., “Circular and noncircular subsonic jets in cross flow,” Physics of Fluids, Vol. 20, No. 7, 2008, pp. 075110-1~17.
5. Catalano, G. D., Chang, K. S., and Mathis, J. A., “Investigation of turbulent jet impingement in a confined crossflow,” AIAA Journal, Vol. 27, No. 11, 1989, pp. 1530-1535.
6. Cimbala, J. M., Billet, M. L., Gaublomme, D. P., and Oefelein J. C., “Experiments in the unsteadiness associated with a ground vortex,” Journal of Aircraft, Vol. 28, No. 4, 1991, pp. 261-265.
7. Barata, J. M. M., Durao, D. F. G., Heitor, M. V., and McGuirk, J. J., “The turbulence characteristics of a single impinging jet through a cross-flow,” Experimental Thermal and Fluid Science, Vol. 5, No. 4, 1992, pp. 487-498.
8. Barata, J. M. M., Durao, D. F. G., Heitor, M. V., and McGuirk, J. J., “On the analtsis off an impinging jet on ground effects,” Experiments in Fluids, Vol. 15, No. 2, 1993, pp. 117-129.
9. Barata, J. M. M., Durao, D. F. G., “Laser-Doppler measurements of impinging jet flows through a crossflow,” Experiments in Fluids, Vol. 36, No. 5, 2004, pp. 665-674.
10. Fan, J. Y., Zhang, Y., and Wang, D. Z., “Experimental study on the vortex formation and entrainment characteristics for a round transverse jet in shallow water,” Journal of Hydrodynamics, Vol. 21, No. 3, 2009, pp. 386-393.
11. Stoy, R.L., and Benhaim, Y., “Turbulent jets in a confined cross-flow,” Journal of Fluids Engineering, Vol. 95, No. 4, 1973, pp. 551-556.
12. Kamotani, Y., and Greber, I., “Experiments on confined turbulent jets in cross flow,” The 6th Fluid and Plasma dynamics Conference, Palm Springs, CA, July 1974.
13. Nakabe, K., Inaoka, K., AI, T., and Suzuki, K., “Flow visualization of longitudinal vortices induced by an inclined impinging jet in a crossflow - Effective cooling of high temperature gas turbine blades,” Energy Conversion and Management, Vol 38, No. 10-13, 1997, pp. 1145-1153.
14. Wae-Hayee, M., Tekasakul, P., Eiamsa-ard, S., and Nuntadusit, C., “Flow and heat transfer characteristics of in-line impinging jets with cross-flow at short jet-to-plate distance, ” Experimental Heat Transfer, Vol 28, No. 6, 2014, pp. 511-530.
15. Wang, C., Luo, L., Wang, L., and Sunden, B., “Heat transfer and fluid flow of a single jet impingement in cross-flow modified by a vortex generator pair,” Turbomachinery Technical Conference and Exposition, Phoenix, AZ, June 2016.
16. Worth, N. A., and Yang, Z. Y., “Simulation of an impinging jet in a crossflow using a Reynolds stress transport model,” International Journal for Numerical Methods in Fluids, Vol. 52, No. 2, 2006, pp. 199-211.
17. Fan, J. Y., Wang, D. Z., and Zhang, Y., “Large-scale vortical structures produced by an impinging density jet in shallow crossflow,” Applied Mathematics and Mechanics, Vol. 27, No. 3, 2006. pp. 363-369.
18. Fan, J. Y., Zhang, Y., and Wang, D. Z., “Large-eddy simulation of three-dimensional vortical structures for an impinging transverse jet in the near region.” Journal of Hydrodynamics, Vol. 19, No. 3, 2007. pp. 314-321.
19. Flagan, R. C., and Seinfeld, J. H., Fundamentals of air pollution engineering. Prentice Hall, Englewood Cliffs, New Jersey, 1988.
20. Baker, C., “The turbulent horseshoe vortex,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 6, No. 1-2, 1980. pp. 9-23.
21. Perry, A., and Fairlie, B., “Critical points in flow patterns,” Advances in geophysics. Vol. 18, Part B, 1975. pp. 299-315.
22. Perry, A., Chong, M., and Lim, T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982. pp. 77-90.
23. Steiner, T., and Perry, A., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 2. Far-wake structures,” Journal of Fluid Mechanics, Vol. 174, 1987. pp. 271-298.
24. Hunt, J. C. R., Abell, C. J., Peterka, J.A., and Woo, H., “Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, No. 1, 1978. pp. 179-200.
25. Huang, R. F., and Hsu, C. M., “Flow and mixing characteristics of an elevated pulsating transverse jet,” Physics of Fluids, Vol. 24, No. 1, 2012.
26. Su, L. K., and Mungal, M. G., “Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets,” Journal of Fluid Mechanics, Vol. 513, 2004, pp. 1-45.

無法下載圖示 全文公開日期 2024/07/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE