簡易檢索 / 詳目顯示

研究生: 王諭平
Yu-ping Wang
論文名稱: 探討溫敏型離子液體相分離機制 與作為正滲透提取液之應用
A Study on Phase Separated Behaviors of Thermally Responsive Ionic Liquid and its Applications on Forward Osmosis
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 黃盟舜
MENG-SHUN HUANG
鄭智嘉
JHIH-JIA JHENG
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 89
中文關鍵詞: 離子液體相分離溫敏正滲透海水淡化
外文關鍵詞: ionic liquid, phase separation, Thermally Responsive, forward osmosis, seawater retreatment
相關次數: 點閱:254下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

正滲透作為低耗能脫鹽程序,符合永續能源發展的條件,除了探討當前主流的幾種脫鹽技術,比較彼此之間在技術成熟度、能耗以及限制因子上的差異,並針對正滲透進行更進一步的討論,此脫鹽技術關鍵在於薄膜與提取液兩大方面,本研究聚焦於將離子液體[P4444][Mal]作為提取液應用之探討,觀察此具備相分離現象的離子液體在不同濃度、溫度、時間相分離時性質上的變化,透過紫外線-可見光分光光譜儀 (UV-Visble spectrometers),來觀察不同濃度相分離產生的臨界溫度,結果在離子液體重量百分濃度30%至70%具有室溫相分離的特性,其餘較低或是較高濃度之比重需要較高之環境溫度,才能產生相分離現象,其相圖呈現U型分佈,以離子液體重量百分濃度為50 %時具有最低臨界相變溫度(LCST)。
濃度與相分離之關聯性直接影響到正滲透脫鹽程序在操作濃度上的調控,在系統中提取液濃度隨著滲透壓所帶來的水通量而下降,導致離子液體水溶液產生相分離現象,進一步處理相分離產生的上層液(Water-rich)以及下層液(Ionic Liquid-rich),上層液為所需乾淨水資源的主要來源,依使用需求透過不同處理方式來去除與回收少量殘留離子液體,即可得到乾淨再生水資源,而下層液為高濃度離子液體,可繼續回到正滲透系統中作為提取液使用。
觀察主要材料的相分離特性,來將離子液體應用在正滲透薄膜脫鹽程序中,離子液體與水分子間交互作用力隨著濃度變化而改變,進而導致相分離現象發生,從相變化圖來看含水量偏高或是偏低時分散相所佔比例較少,達到兩相分離所需溫度也急遽升高,推測造成原因為分散相與溶劑之作用力會隨著兩者數量差距擴大而增加。


Forward osmosis as a low-energy desalination process, in line with the conditions of sustainable energy development, in addition to the current mainstream of several desalination technology, compared with each other in the technical maturity, energy consumption and limiting factors on the difference. For further discussion on Forward osmosis, the key to this desalination technology is the membrane and draw solution two aspects, this study focused on the ionic liquid [P4444] [Mal] as the application of draw solution to observe the phase separation of the ionic liquid at different concentrations (UV-Visible spectrometer) to observe the critical temperature of phase separation produced by different concentrations. As a result, the ionic liquid has phase separation at percentage of 30% to 70% by weight. The results are shown in phase diagram. At room temperature, the lower or the higher concentration of the ionic liquid need for a higher temperature in order to produce phase separation phenomenon. The phase diagram showing U-like distribution, the ionic liquid weight percentage of 50% has the lowest Low Critical Solution Temperature (LCST).
        The correlation between the concentration and the phase separation directly affects the system of the forward osmosis process. In the system, the concentration of the ionic liquid in the system decreases with the water flux caused by the osmotic pressure, resulting in the phase separation of the ionic liquid aqueous solution, (Ionic Liquid-rich), the upper layer liquid is the main source of the required clean water resources, according to the demand through different treatment to remove and recover a small amount of residual ionic liquid. After retreatment can get clean water resources. Other side, the lower liquid for the high concentration of ionic liquid, can continue to return to the forward osmosis system used as draw solution.
        The interaction between the ionic liquid and the water molecules changes with the change of the concentration, which leads to the phase separation phenomenon. From the phase change diagram. When the water content is too high or low, the proportion of the dispersed phase is small, and the temperature required for the separation of the two phases is also increased rapidly. The reason is that the force of the dispersed phase and the solvent increases with the widening of ionic liquid and water.

致謝 IV 中文摘要 V Abstract VII 表目錄 IX 圖目錄 X 第一章.前言 12 1.1研究緣起 12 1.2研究目的與動機 15 第二章.文獻回顧 16 2.1技術比較(薄膜程序) 16 2.2 正滲透技術介紹 21 2.2.1正滲透技術應用 22 2.2.2正滲透薄膜材料 24 2.2.3 正滲透提取液 25 2.3相分離提取液材料 27 2.3.1 Non-responsive 提取液 27 2.3.2 Responsive 提取液 29 2.4離子液體介紹 35 2.4.1離子液體應用 35 2.4.2離子液體種類 37 2.5低臨界溶液溫度(LCST)材料 39 2.5.1 LCST特性之離子液體[55] 39 2.5.2 LCST特性之高分子 42 2.6四丁基磷酸為陽離子之離子液體 43 第三章.研究方法 44 3.1實驗流程圖 44 3.2實驗材料與步驟 45 3.2.1離子液體製備與純化 45 3.2.2 正滲透膜材選擇 46 3.3分析儀器 48 3.4相分離現象記錄 51 3.4.1常溫下不同濃度相分離 51 3.4.2常溫分離時間紀錄 52 3.4.3不同溫度相分離時間紀錄 54 3.5基本性質測定 55 3.6離子液體合成及鑑定分析 60 3.7 FO模組系統示意圖 61 3.8 FO通量記錄 62 3.9提取液分離處理 64 第四章.結果與討論 68 4.1離子液體相分離機制 68 4.1.1溫度對相分離之影響 68 4.1.2濃度對相分離之影響 71 4.1.3時間對相分離之影響 73 4.2運行於正滲透提取液之 74 4.2.1實際模組運行之水通量 74 4.2.2上層液後處理 76 第五章.結論 79 5.1未來展望 80 第六章.參考資料 81

[1] Aldhous, P. (2003). The world's forgotten crisis. Nature, 422(6929), 251-251.
[2] Yu, P. S., Yang, T. C., & Wu, C. K. (2002). Impact of climate change on water resources in southern Taiwan. Journal of Hydrology, 260(1), 161-175.
[3] Lattemann, S., & Höpner, T. (2008). Environmental impact and impact assessment of seawater desalination. Desalination, 220(1-3), 1-15.
[4] Trieb, F., & Müller-Steinhagen, H. (2008). Concentrating solar power for seawater desalination in the Middle East and North Africa. Desalination, 220(1-3), 165-183.
[5] Avlonitis, S. A., Kouroumbas, K., & Vlachakis, N. (2003). Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination, 157(1), 151-158.
[6] Elimelech, M., & Phillip, W. A. (2011). The future of seawater desalination: energy, technology, and the environment. science, 333(6043), 712-717.
[7] Goosen, M. F. A., Sablani, S. S., Al‐Hinai, H., Al‐Obeidani, S., Al‐Belushi, R., & Jackson, D. (2005). Fouling of reverse osmosis and ultrafiltration membranes: a critical review. Separation Science and Technology, 39(10), 2261-2297.
[8] Bajpayee, A., Luo, T., Muto, A., & Chen, G. (2011). Very low temperature membrane-free desalination by directional solvent extraction. Energy & Environmental Science, 4(5), 1672-1675.
[9] Mi, B., & Elimelech, M. (2010). Organic fouling of forward osmosis membranes: fouling reversibility and cleaning without chemical reagents. Journal of membrane science, 348(1), 337-345.
[10] Phuntsho, S., Shon, H. K., Hong, S., Lee, S., Vigneswaran, S., & Kandasamy, J. (2012). Fertiliser drawn forward osmosis desalination: the concept, performance and limitations for fertigation. Reviews in Environmental Science and Bio/Technology, 11(2), 147-168.
[11] Hoover, L. A., Phillip, W. A., Tiraferri, A., Yip, N. Y., & Elimelech, M. (2011). Forward with osmosis: emerging applications for greater sustainability.
[12] Tan, C. H., & Ng, H. Y. (2010). A novel hybrid forward osmosis-nanofiltration (FO-NF) process for seawater desalination: draw solution selection and system configuration. Desalination and water treatment, 13(1-3), 356-361.
[13] Cai, Y., Shen, W., Wei, J., Chong, T. H., Wang, R., Krantz, W. B., ... & Hu, X. (2015). Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environmental Science: Water Research & Technology, 1(3), 341-347.
[14] Ge, Q., Su, J., Amy, G. L., & Chung, T. S. (2012). Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water research, 46(4), 1318-1326.
[15] Kravath, R. E., & Davis, J. A. (1975). Desalination of sea water by direct osmosis. Desalination, 16(2), 151-155.
[16] Ge, Q., & Chung, T. S. (2013). Hydroacid complexes: a new class of draw solutes to promote forward osmosis (FO) processes. Chemical communications, 49(76), 8471-8473.
[17] Zhao, Q., Chen, N., Zhao, D., & Lu, X. (2013). Thermoresponsive magnetic nanoparticles for seawater desalination. ACS applied materials & interfaces, 5(21), 11453-11461.
[18] Liu, Z., Bai, H., Lee, J., & Sun, D. D. (2011). A low-energy forward osmosis process to produce drinking water. Energy & Environmental Science, 4(7), 2582-2585.
[19] Cai, Y., Shen, W., Wang, R., Krantz, W. B., Fane, A. G., & Hu, X. (2013). CO2 switchable dual responsive polymers as draw solutes for forward osmosis desalination. Chemical Communications, 49(75), 8377-8379.
[20] Stone, M. L., Rae, C., Stewart, F. F., & Wilson, A. D. (2013). Switchable polarity solvents as draw solutes for forward osmosis. Desalination, 312, 124-129.
[21] Kim, Y. C., Han, S., & Hong, S. (2011). A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis. Water Science and Technology, 64(2), 469-476.
[22] Razmjou, A., Liu, Q., Simon, G. P., & Wang, H. (2013). Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy. Environmental science & technology, 47(22), 13160-13166.
[23] SCI-ART LAB,Science, Electronic Source: http://kkartlab.in/
[24] Huang, C., Xu, T., Zhang, Y., Xue, Y., & Chen, G. (2007). Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. Journal of Membrane Science, 288(1), 1-12.
[25] Alkhudhiri, A., Darwish, N., & Hilal, N. (2012). Membrane distillation: a comprehensive review. Desalination, 287, 2-18.
[26] McCutcheon, J.R., Elimelech, M., 2008. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 318 (1-2), 458-466.
[27] Zhao, S., Zou, L., Tang, C. Y., & Mulcahy, D. (2012). Recent developments in forward osmosis: opportunities and challenges. Journal of Membrane Science, 396, 1-21
[28] Osmotek Inc., Landfill leachate treatment, 2003, Electronic Source: http://www.rimnetics.com/osmotek.htm.
[29] Hydration Technologies Inc., Hydration bags—technology overview, Electronic source: http://www.hydrationtech.com/merchant.mv?Screen=
CTGY&Store Code=MHTI&Category Code=TECH-FO.
[30] HTI, Military/X Pack, 2005.
Electronic Source: http://www.hydrationtech.com.
[31] McCutcheon, J. R., McGinnis, R. L., & Elimelech, M. (2005). A novel ammonia—carbon dioxide forward (direct) osmosis desalination process. Desalination, 174(1), 1-11.
[32] Thorsen, T., 2004. Concentration polarisation by natural organic matter (NOM) in NF and UF. J. Membr. Sci. 233 (1-2), 79-91.
[33] Bai, H., Liu, Z., & Sun, D. D. (2011). Highly water soluble and recovered dextran coated Fe 3 O 4 magnetic nanoparticles for brackish water desalination. Separation and purification technology, 81(3), 392-399.
[34] Li, D., Zhang, X., Yao, J., Simon, G. P., & Wang, H. (2011). Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chemical Communications, 47(6), 1710-1712.
[35] Cai, Y. (2016). A critical review on draw solutes development for forward osmosis. Desalination, 391, 16-29.
[36] Kessler, J. O., & Moody, C. D. (1976). Drinking water from sea water by forward osmosis. Desalination, 18(3), 297-306.
[37] Achilli, A., Cath, T. Y., & Childress, A. E. (2010). Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science, 364(1), 233-241.
[38] Su, J., Chung, T. S., Helmer, B. J., & de Wit, J. S. (2013). Understanding of low osmotic efficiency in forward osmosis: experiments and modeling. Desalination, 313, 156-165.
[39] Ge, Q., Su, J., Amy, G. L., & Chung, T. S. (2012). Exploration of polyelectrolytes as draw solutes in forward osmosis processes. Water research, 46(4), 1318-1326.
[40] Tian, E., Hu, C., Qin, Y., Ren, Y., Wang, X., Wang, X., ... & Yang, X. (2015). A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis. Desalination, 360, 130-137.
[41] Kim, J. J., Chung, J. S., Kang, H., Yu, Y. A., Choi, W. J., Kim, H. J., & Lee, J. C. (2014). Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes. Macromolecular Research, 22(9), 963-970.
[42] Hobson, L. J., & Feast, W. J. (1999). Poly (amidoamine) hyperbranched systems: synthesis, structure and characterization. Polymer, 40(5), 1279-1297.
[43] Lutchmiah, K., Lauber, L., Roest, K., Harmsen, D. J., Post, J. W., Rietveld, L. C., ... & Cornelissen, E. R. (2014). Zwitterions as alternative draw solutions in forward osmosis for application in wastewater reclamation. Journal of Membrane Science, 460, 82-90.
[44] Klaysom, C., Cath, T. Y., Depuydt, T., & Vankelecom, I. F. (2013). Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply. Chemical society reviews, 42(16), 6959-6989.
[45] Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature nanotechnology, 4(10), 634-641.
[46] Guo, C. X., Zhao, D., Zhao, Q., Wang, P., & Lu, X. (2014). Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chemical Communications, 50(55), 7318-7321.
[47] Kim, Y. C., Han, S., & Hong, S. (2011). A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis. Water Science and Technology, 64(2), 469-476.
[48] Zhao, S. (2014). Osmotic pressure versus swelling pressure: comment on “bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy”. Environmental science & technology, 48(7), 4212-4213.
[49] Li, D., Zhang, X., Yao, J., Simon, G. P., & Wang, H. (2011). Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination. Chemical Communications, 47(6), 1710-1712.)
[50] Luo, H., Wang, Q., Tao, T., Zhang, T. C., & Zhou, A. (2014). Performance of strong ionic hydrogels based on 2-acrylamido-2-methylpropane sulfonate as draw agents for forward osmosis. Journal of Environmental Engineering, 140(12), 04014044.
[51] McGinnis, R. L., Hancock, N. T., Nowosielski-Slepowron, M. S., & McGurgan, G. D. (2013). Pilot demonstration of the NH 3/CO 2 forward osmosis desalination process on high salinity brines. Desalination, 312, 67-74.
[52] Hough, W. T. (1970). U.S. Patent No. 3,532,621. Washington, DC: U.S. Patent and Trademark Office.
[53] Cai, Y., Shen, W., Wei, J., Chong, T. H., Wang, R., Krantz, W. B., ... & Hu, X. (2015). Energy-efficient desalination by forward osmosis using responsive ionic liquid draw solutes. Environmental Science: Water Research & Technology, 1(3), 341-347.
[54] Zhong, Y., Feng, X., Chen, W., Wang, X., Huang, K. W., Gnanou, Y., & Lai, Z. (2015). Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water. Environmental science & technology, 50(2), 1039-1045.
[55] Kohno, Y., Saita, S., Men, Y., Yuan, J., & Ohno, H. (2015). Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 6(12), 2163-2178.
[56] Glasbrenner, H., & Weingaertner, H. (1989). Phase separation and critical point of an aqueous electrolyte solution. The Journal of Physical Chemistry, 93(9), 3378-3379.
[57] Kohno, Y., & Ohno, H. (2012). Temperature-responsive ionic liquid/water interfaces: Relation between hydrophilicity of ions and dynamic phase change. Physical Chemistry Chemical Physics, 14(15), 5063-5070.
[58] Kohno, Y., Arai, H., Saita, S., & Ohno, H. (2012). Material design of ionic liquids to show temperature-sensitive LCST-type phase transition after mixing with water. Australian Journal of Chemistry, 64(12), 1560-1567.
[59] Najdanovic-Visak, V., Esperança, J. M., Rebelo, L. P., da Ponte, M. N., Guedes, H. J., Seddon, K. R., & Szydlowski, J. (2002). Phase behaviour of room temperature ionic liquid solutions: an unusually large co-solvent effect in (water+ ethanol). Physical Chemistry Chemical Physics, 4(10), 1701-1703.
[60] Kohno, Y., & Ohno, H. (2012). Key factors to prepare polyelectrolytes showing temperature-sensitive lower critical solution temperature-type phase transitions in water. Australian Journal of Chemistry, 65(1), 91-94.
[61] Li, W., & Wu, P. (2014). Unusual thermal phase transition behavior of an ionic liquid and poly (ionic liquid) in water with significantly different LCST and dynamic mechanism. Polymer Chemistry, 5(19), 5578-5590.
[62] Anastas, P. T., & Zimmerman, J. B. (2003). Peer reviewed: design through the 12 principles of green engineering.
[63] Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99(8), 2071-2084.
[64] Jaeger, D. A., & Tucker, C. E. (1989). Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt. Tetrahedron Letters, 30(14), 1785-1788.
[65] Wasserscheid, P., Bösmann, A., & Bolm, C. (2002). Synthesis and properties of ionic liquids derived from the ‘chiral pool’. Chemical Communications, (3), 200-201.
[66] Boon, J. A., Levisky, J. A., Pflug, J. L., & Wilkes, J. S. (1986). Friedel-Crafts reactions in ambient-temperature molten salts. The Journal of Organic Chemistry, 51(4), 480-483.
[67] Chauvin, Y., Mussmann, L., & Olivier, H. (1996). A Novel Class of Versatile Solvents for Two‐Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid 1, 3‐Dialkylimidazolium Salts. Angewandte Chemie International Edition in English, 34(23‐24), 2698-2700.
[68] Chauvin, Y., Mussmann, L., & Olivier, H. (1996). A Novel Class of Versatile Solvents for Two‐Phase Catalysis: Hydrogenation, Isomerization, and Hydroformylation of Alkenes Catalyzed by Rhodium Complexes in Liquid 1, 3‐Dialkylimidazolium Salts. Angewandte Chemie International Edition in English, 34(23‐24), 2698-2700.
[69] Kaufmann, D. E., Nouroozian, M., & Henze, H. (1996). Molten salts as an efficient medium for palladium catalyzed CC coupling reactions. Synlett, 1996(11), 1091-1092.
[70] Zim, D., de Souza, R. F., Dupont, J., & Monteiro, A. L. (1998). Regioselective synthesis of 2-arylpropionic esters by palladium-catalyzed hydroesterification of styrene derivatives in molten salt media. Tetrahedron letters, 39(39), 7071-7074.
[71] Howarth, J. (2000). Oxidation of aromatic aldehydes in the ionic liquid [bmim] PF 6. Tetrahedron Letters, 41(34), 6627-6629.
[72] Park, S., & Kazlauskas, R. J. (2003). Biocatalysis in ionic liquids–advantages beyond green technology. Current Opinion in Biotechnology, 14(4), 432-437.
[73] 張敏超. (2014). 離子液體特性及其在化學上的應用. 工業材料雜誌325期, 77
[74] Wei, G. T., Chen, J. C., & Yang, Z. (2003). Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Journal of the Chinese Chemical Society, 50(6), 1123-1130.
[75] Visser, A. E., Swatloski, R. P., & Rogers, R. D. (2000). pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chemistry, 2(1), 1-4.
[76] Lo, W. H., Yang, H. Y., & Wei, G. T. (2003). One-pot desulfurization of light oils by chemical oxidation and solvent extraction with room temperature ionic liquids. Green Chemistry, 5(5), 639-642.
[77] 邵信. (2014). 離子液體在環境領域之應用. 工業材料雜誌325期, 84

無法下載圖示 全文公開日期 2023/02/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2028/02/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE