簡易檢索 / 詳目顯示

研究生: 馬愷駿
Kai-Chun Ma
論文名稱: 以雙環諧振器實現波長可調外腔式雷射的設計與分析
Design and Analyses of Tunable Lasers with External-Cavity Double Ring Resonators
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
何文章
Wen-Jeng Ho
洪勇智
Yu-Jen Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 可調式雷射雙環諧振器游標尺效應外腔雷射
外文關鍵詞: Tunable Laser, Double Ring Resonators, Vernier Effect, External Cavity Laser
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

外部共振腔雷射擁有大波長調變範圍以及低線寬的優勢,近年被使用在許多光學系統上,成為熱門的研究主題。因為在遠距傳輸,光偵測以及光學雷達都需要低線寬和高輸出功率的雷射作為光源,很多研究團隊都想進一步提升外部共振腔雷射的線寬,波長調變範圍以及光功率。
為了實現穩定且擁有大範圍波長調變能力的可調式雷射,本論文利用模擬軟體來設計與優化以雙環諧振器作為外腔之可調式雷射,採用雙環諧振器提升共振腔長度,並選擇利用氮化矽波導平台製作降低傳播損失,以降低線寬。此雙環諧振器因半徑些微不同具有不同的自由頻譜範圍,將此雙環諧振器與增益晶片整合成可調波長雷射時,可以使用游標尺效應來增大可調波長範圍,但其波長調動的操作較為複雜,且牽涉的元件參數較多。
在模擬設計中會對於雙環諧振器外腔雷射的光學特性進行分析,像是環形諧振器的品質因子,細緻度和自由頻譜範圍以及其基本電性,並展示透過游標尺效應來達成波長調變的效果。經過模擬優化的雙環諧振器設計已下線利用氮化矽波導平台製作。
綜合上述模擬結果,以雙環諧振器作為外腔之可調式雷射波長調動範圍可以達到77.67奈米,旁模抑制比均大於35分貝,平均旁模抑制比為43.8分貝。


To realize a stable and widely tunable laser for applications in optical communication and sensing systems as a light source, this thesis utilizes simulation software to design and optimize a wavelength tunable laser with a dual-ring resonator as an external cavity. The dual-ring resonator offers different free spectral ranges. When integrating the dual-ring resonator with a gain chip to form a tunable laser, the Vernier effect can be employed to enlarge the wavelength tuning range. However, the wavelength tuning operation is complex and the device optimization involves multiple component parameters.

In the simulation design, the optical characteristics of the dual-ring resonator external-cavity laser are analyzed, including the quality factor, finesse, free spectral range, and basic electrical properties of the ring resonators. The effectiveness of wavelength tuning through the Vernier effect is demonstrated. The optimized design of the dual-ring resonator, achieved through simulation, has been tape-out for fabrication on a silicon nitride waveguide platform.

Based on the simulation results, the dual-ring resonator-based tunable laser achieves a wavelength tuning range of 77.67 nm, with a minimum side-mode suppression ratio (SMSR) exceeding 35 dB and an average SMSR of 43.8 dB.

摘要 I Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XIII 第一章 導論 1 1-1 前言 1 1-2 利用標準CMOS製程開發波導平台 2 1-2-1 LioniX NOI波導製程 3 1-3 主動與被動元件組裝方式 5 1-4 雷射共振腔鏡面設計 6 1-5 文獻回顧 9 1-6 研究方向 18 1-7 論文架構 18 第二章 基本原理 19 2-1 環形諧振器基本特性 19 2-1-1 All-pass ring resonators 19 2-1-2 Add-drop ring resonators 20 2-2 光譜特性 21 2-3 線寬 24 2-3-1 線寬原理 24 2-4 相對強度雜訊 27 第三章 模擬軟體運作原理 28 3-1 模擬軟體介紹 28 3-2 TLLM操作細節 28 3-3 光場的行進波方程式 29 3-4 增益模型 29 3-5 光學損失模型 31 第四章 模擬建模與結果分析 32 4-1 外腔式雷射模擬架構 32 4-1-1 TWLM元件基本原理 33 4-1-2 環形諧振器基本特性 36 4-1-3 雙環諧振器 46 4-2 外腔式雷射特性分析 50 4-2-1 光學特性分析 50 4-2-2 電性分析 53 4-3 波長調變 56 4-4 線寬模擬 62 4-5 相對強度雜訊模擬 66 4-6 OptoDesigner下線 69 第五章 結論 71 5-1 成果與討論 71 5-2 未來研究方向 73 參考文獻 74 附件 79

[1] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678-1687, 2006.
[2] B. Jalali and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, vol. 24, no. 12, pp. 4600-4615, 2006.
[3] J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, "Terabit transmitters using heterogeneous III-V/Si photonic integrated circuits," in Optical Fiber Communication Conference, 2020: Optica Publishing Group, p. W3F. 1.
[4] Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, and B. R. Ilic, "Architecture for the photonic integration of an optical atomic clock," Optica, vol. 6, no. 5, pp. 680-685, 2019.
[5] G. Moody, L. Chang, T. J. Steiner, and J. E. Bowers, "Chip-scale nonlinear photonics for quantum light generation," AVS Quantum Science, vol. 2, no. 4, 2020.
[6] T. Rudolph, "Why I am optimistic about the silicon-photonic route to quantum computing," APL Photonics, vol. 2, no. 3, 2017.
[7] L. Tombez, E. J. Zhang, J. S. Orcutt, S. Kamlapurkar, and W. M. Green, "Methane absorption spectroscopy on a silicon photonic chip," Optica, vol. 4, no. 11, pp. 1322-1325, 2017.
[8] T. Baba, H. Ito, H. Abe, T. Tamanuki, Y. Hinakura, R. Tetsuya, J. Maeda, M. Kamata, R. Kurahashi, and R. Shiratori, "Si pic based on photonic crystal for lidar applications," in Optical Fiber Communication Conference, 2020: Optica Publishing Group, p. M4H. 1.
[9] L. A. Coldren, G. A. Fish, Y. Akulova, J. Barton, L. Johansson, and C. Coldren, "Tunable semiconductor lasers: A tutorial," Journal of Lightwave Technology, vol. 22, no. 1, p. 193, 2004.
[10] Y. T. Hsueh, "Analysis of Cascaded DFB Laser Arrays with
Anti-Reflection Coatings on Both Facets," Master Thesis, National Taiwan University of Science and Technology, 2022.
[11] T. Komljenovic, L. Liang, R.-L. Chao, J. Hulme, S. Srinivasan, M. Davenport, and J. E. Bowers, "Widely-tunable ring-resonator semiconductor lasers," Applied Sciences, vol. 7, no. 7, p. 732, 2017.
[12] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," Journal of Lightwave Technology, vol. 23, no. 1, p. 401, 2005.
[13] C. G. Roeloffzen, M. Hoekman, E. J. Klein, L. S. Wevers, R. B. Timens, D. Marchenko, D. Geskus, R. Dekker, A. Alippi, and R. Grootjans, "Low-loss Si3N4 TriPleX optical waveguides: Technology and applications overview," IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 4, pp. 1-21, 2018.
[14] E. M. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. Van Tilburg, C. Mao, Y. Ren, V. T. van Lange, K. Korzun, and S. Kölling, "Direct-bandgap emission from hexagonal Ge and SiGe alloys," Nature, vol. 580, no. 7802, pp. 205-209, 2020.
[15] S. Wirths, R. Geiger, N. Von Den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, and J.-M. Hartmann, "Lasing in direct-bandgap GeSn alloy grown on Si," Nature Photonics, vol. 9, no. 2, pp. 88-92, 2015.
[16] D. Liang and J. E. Bowers, "Recent progress in lasers on silicon," Nature Photonics, vol. 4, no. 8, pp. 511-517, 2010.
[17] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, "III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects," Laser & Photonics Reviews, vol. 4, no. 6, pp. 751-779, 2010.
[18] X. Luo, Y. Cao, J. Song, X. Hu, T.-Y. Liow, M. Yu, Q. Wang, and G.-Q. Lo, "High-throughput multiple dies-to-wafer (D2W) bonding for III/V-on-Si hybrid lasers," in 2015 Optical Fiber Communications Conference and Exhibition (OFC).
[19] K. Kato and Y. Tohmori, "PLC hybrid integration technology and its application to photonic components," IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, pp. 4-13, 2000.
[20] D. A. Miller, "Optical interconnects to silicon," IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1312-1317, 2000.
[21] R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, "Compact GaSb/silicon-on-insulator 2.0 x μm widely tunable external cavity lasers," Optics Express, vol. 24, no. 25, pp. 28977-28986, 2016.
[22] P. A. Morton and M. J. Morton, "High-power, ultra-low noise hybrid lasers for microwave photonics and optical sensing," Journal of Lightwave Technology, vol. 36, no. 21, pp. 5048-5057, 2018.
[23] A. Larrue, C. Wilhelm, G. Vest, S. Combrié, A. De Rossi, and C. Soci, "Monolithic integration of III-V nanowire with photonic crystal microcavity for vertical light emission," Optics Express, vol. 20, no. 7, pp. 7758-7770, 2012.
[24] H. J. Joyce, Q. Gao, H. H. Tan, C. Jagadish, Y. Kim, J. Zou, L. M. Smith, H. E. Jackson, J. M. Yarrison-Rice, and P. Parkinson, "III–V semiconductor nanowires for optoelectronic device applications," Progress in Quantum Electronics, vol. 35, no. 2-3, pp. 23-75, 2011.
[25] W. Xiangyu, "Fabrication adn Performance Analyses of High Speed Partial Grating Direct Modulation Lasers," Master, National Taiwan University of Science and Technology 2022.
[26] A. T. Aho, J. Viheriälä, J. Mäkelä, H. Virtanen, S. Ranta, M. Dumitrescu, and M. Guina, "High-power 1550 nm tapered DBR laser diodes for LIDAR applications," in The European Conference on Lasers and Electro-Optics, 2017: Optica Publishing Group, p. CB_7_4.
[27] M. Ishizaka and H. Yamazaki, "Wavelength tunable laser using silica double ring resonators," Electronics and Communications in Japan (Part II: Electronics), vol. 89, no. 3, pp. 34-41, 2006.
[28] T. Chu, N. Fujioka, and M. Ishizaka, "Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic wire waveguide micro-ring resonators," Optics Express, vol. 17, no. 16, pp. 14063-14068, 2009.
[29] K. Nemoto, T. Kita, and H. Yamada, "Narrow spectral linewidth wavelength tunable laser with Si photonic-wire waveguide ring resonators," in The 9th International Conference on Group IV Photonics (GFP), 2012: IEEE, pp. 216-218.
[30] N. Kobayashi, K. Sato, M. Namiwaka, K. Yamamoto, S. Watanabe, T. Kita, H. Yamada, and H. Yamazaki, "Silicon photonic hybrid ring-filter external cavity wavelength tunable lasers," Journal of Lightwave Technology, vol. 33, no. 6, pp. 1241-1246, 2015.
[31] T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, "Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers," IEEE Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, pp. 214-222, 2015.
[32] J. Zhang, Y. Li, S. Dhoore, G. Morthier, and G. Roelkens, "Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser," Optics Express, vol. 25, no. 6, pp. 7092-7100, 2017.
[33] H. Guan, A. Novack, T. Galfsky, Y. Ma, S. Fathololoumi, A. Horth, T. N. Huynh, J. Roman, R. Shi, and M. Caverley, "Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication," Optics Express, vol. 26, no. 7, pp. 7920-7933, 2018.
[34] Y. Gao, J.-C. Lo, S. Lee, R. Patel, L. Zhu, J. Nee, D. Tsou, R. Carney, and J. Sun, "High-power, narrow-linewidth, miniaturized silicon photonic tunable laser with accurate frequency control," Journal of Lightwave Technology, vol. 38, no. 2, pp. 265-271, 2020.
[35] R. Zhao, Y. Guo, L. Lu, M. S. Nisar, J. Chen, and L. Zhou, "Hybrid dual-gain tunable integrated InP-Si 3 N 4 external cavity laser," Optics Express, vol. 29, no. 7, pp. 10958-10966, 2021.
[36] Y. Guo, R. Zhao, G. Zhou, L. Lu, A. Stroganov, M. S. Nisar, J. Chen, and L. Zhou, "Thermally tuned high-performance III-V/Si 3 N 4 external cavity laser," IEEE Photonics Journal, vol. 13, no. 2, pp. 1-13, 2021.
[37] M. Takahashi, Y. Deki, S. Takaesu, M. Horie, M. Ishizaka, K. Sato, K. Kudo, K. Suzuki, T. Kaneko, and X. Xu, "A stable widely tunable laser using a silica-waveguide triple-ring resonator," in Optical Fiber Communication Conference, 2005: Optica Publishing Group, p. PDP19.
[38] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012.
[39] M. Jacques, A. Samani, E. El-Fiky, D. Patel, Z. Xing, and D. V. Plant, "Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform," Optics Express, vol. 27, no. 8, pp. 10456-10471, 2019.
[40] A. Malik, C. Xiang, L. Chang, W. Jin, J. Guo, M. Tran, and J. Bowers, "Low noise, tunable silicon photonic lasers," Applied Physics Reviews, vol. 8, no. 3, 2021.
[41] L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits. John Wiley & Sons, 2012.
[42] M. A. Tran, D. Huang, and J. E. Bowers, "Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration," APL Photonics, vol. 4, no. 11, 2019.
[43] J. Poëtte, P. Besnard, L. Bramerie, and J.-C. Simon, "Highly sensitive measurement technique of relative intensity noise and laser characterization," Fluctuation and Noise Letters, vol. 8, no. 01, pp. L81-L86, 2008.
[44] C.-H. Chen and G. Griffel, "Linewidth and lineshape analysis of multi-section DFB lasers-a transmission line approach," in LEOS'95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings, 1995, vol. 1: IEEE, pp. 275-276.
[45] S. SULIKHAH, "Design of Advanced High-Speed Light Sources for 400*Gb/s ans Above Optical Interconnects Based on Partially Corrugated Gratings DFB Lasers," PhD Dissertation, National Taiwan University of Science and Technology 2021.
[46] P. V. Mena, S.-M. Kang, and T. A. DeTemple, "Rate-equation-based laser models with a single solution regime," Journal of Lightwave Technology, vol. 15, no. 4, pp. 717-730, 1997.
[47] J. Zhao, R. Oldenbeuving, J. Epping, M. Hoekman, R. Heideman, R. Dekker, Y. Fan, K.-J. Boller, R. Ji, and S. Fu, "Narrow-linewidth widely tunable hybrid external cavity laser using Si 3 N 4/SiO2 microring resonators," in 2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016: IEEE, pp. 24-25.
[48] Y. Chan, M. Premaratne, and A. Lowery, "Semiconductor laser linewidth from the transmission-line laser model," IEE Proceedings-Optoelectronics, vol. 144, no. 4, pp. 246-252, 1997.

無法下載圖示 全文公開日期 2025/08/21 (校內網路)
全文公開日期 2025/08/21 (校外網路)
全文公開日期 2025/08/21 (國家圖書館:臺灣博碩士論文系統)
QR CODE