簡易檢索 / 詳目顯示

研究生: 陳鎰豐
Yi-Fong Chen
論文名稱: 應用DBSCAN演算法及OR-Tools建置員工通勤交通車路線
Applying DBSCAN Algorithm and OR-Tools to Commuter Bus Routes for Corporations
指導教授: 郭財吉
Tsai-Chi Kuo
口試委員: 葉瑞徽
Ruey-Huei Yeh
陳曉敏
Hsiao-min Chen
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 54
中文關鍵詞: 二氧化碳排放具有容量限制的車輛路線問題DBSCAN演算法
外文關鍵詞: Carbon dioxide emissions, Capacitated Vehicle Routing Problem (CVRP), DBSCAN algorithm
相關次數: 點閱:423下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著全球氣候變暖與日益嚴峻的環境問題,溫室氣體的排放問題愈來愈受到關注,特別是CO2氣體的排放,對於人類活動而言,交通運輸業已成為溫室氣體排放最主要和增長最快的領域之一。其中,車輛路徑問題(VRP)是一個組合優化問題,該問題的目標是找到一種最佳的路徑方案,使得有限數量的車輛可以訪問一系列客戶端點,並且在滿足所有客戶需求的同時最小化總行駛距離或總行駛時間。
本研究旨在透過蒐集公司的員工通勤資料,尋求滿足所有需求的員工通勤交通車路線,並將員工通勤的過程視為具有容量限制的VRP,使用約3000筆的真實數據,運用聚類演算法搭配路徑最佳化的方式,以最小化二氧化碳的排放為目標建立一套可廣泛使用的員工通勤交通車路線建置方法,最後再通過比較員工通勤交通車建置前後的二氧化碳排放量變化來驗證此方法的可行性及有效性。結果顯示,本研究提出的方法確實有益於降低因員工通勤所產生之二氧化碳排放量,減少溫室氣體排放的同時員工通勤交通車的服務人數也得到了提升;也因為本研究使用來自個案公司的現實數據,證實本研究所提出的員工通勤交通車路線建置方法在實際應用層面具有可操作性和實用性,為其他企業或組織提供了借鑑和應用的價值。


With the escalating global climate change and increasingly pressing environmental issues, the problem of greenhouse gas emissions has received growing attention, particularly the emissions of CO2 gas. Among human activities, the transportation industry has become one of the major contributors and fastest-growing sectors of greenhouse gas emissions. Within this context, the Vehicle Routing Problem (VRP) is a combinatorial optimization problem aiming to find an optimal routing solution where a limited number of vehicles can visit a set of customer locations while minimizing the total travel distance or time while meeting all customer demands.
This study aims to address the employee commuting traffic routes that satisfy all requirements by collecting employee commuting data within the company. The employee commuting process is treated as a capacity-constrained VRP. Using a dataset consisting of approximately 3000 real-world records, a clustering algorithm combined with path optimization is employed to establish a widely applicable method for constructing employee commuting traffic routes with the objective of minimizing CO2 emissions. Finally, the feasibility and effectiveness of this method are validated by comparing the changes in CO2 emissions before and after the establishment of employee commuting traffic routes. The results demonstrate that the proposed method in this study indeed contributes to the reduction of CO2 emissions resulting from employee commuting, while simultaneously improving the service capacity of employee commuting traffic routes. Moreover, the use of real-world data from the case company verifies the operational and practical applicability of the employee commuting traffic route construction method proposed in this study, providing valuable insights and applications for other enterprises or organizations.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目標 2 1.3 研究流程架構 3 第二章 文獻探討 5 2.1 與交通運輸相關的二氧化碳排放計算 5 2.2 聚類分析相關文獻 6 2.3 車輛路徑問題相關文獻 7 2.4 相關文獻整理 10 第三章 研究方法 12 3.1 資料座標化 13 3.2 聚類分析 13 3.3 員工通勤交通車路線排程 17 3.4 應用工具介紹 20 第四章 研究結果與討論 21 4.1 資料蒐集與介紹 21 4.2 個案公司現行通勤方式之二氧化碳排放量計算 21 4.3 研究成果呈現 23 4.4 個案分析小結 37 第五章 結論與建議 38 5.1 結論 38 5.2 研究貢獻與限制及未來研究建議 38 參考文獻 40

Alonso, M. F., Longo, K. M., Freitas, S. R., da Fonseca, R. M., Marécal, V., Pirre, M., & Klenner, L. G. (2010). An urban emissions inventory for South America and its application in numerical modeling of atmospheric chemical composition at local and regional scales. Atmospheric environment, 44(39), 5072-5083.
Amjad, F., Agyekum, E. B., Shah, L. A., & Abbas, A. (2021). Site location and allocation decision for onshore wind farms, using spatial multi-criteria analysis and density-based clustering. A techno-economic-environmental assessment, Ghana. Sustainable Energy Technologies and Assessments, 47, 101503.
Bazan, E., Jaber, M. Y., & Zanoni, S. (2015). Supply chain models with greenhouse gases emissions, energy usage and different coordination decisions. Applied Mathematical Modelling, 39(17), 5131-5151.
Bodin, L., & Golden, B. (1981). Classification in vehicle routing and scheduling. Networks, 11(2), 97-108.
Burkhardt, K., Nguyen, P., & Poincelot, E. (2020). Agents of change: Women in top management and corporate environmental performance. Corporate Social Responsibility and Environmental Management, 27(4), 1591-1604.
Chang, C.-C., Liao, Y.-T., & Chang, Y.-W. (2019). Life cycle assessment of carbon footprint in public transportation-a case study of bus route no. 2 in Tainan city, taiwan. Procedia Manufacturing, 30, 388-395.
Chang, C.-T., Yang, C.-H., & Lin, T.-P. (2019). Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. Journal of Cleaner Production, 230, 1241-1255.
Chisman, J. A. (1975). The clustered traveling salesman problem. Computers & Operations Research, 2(2), 115-119.
Dantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management science, 6(1), 80-91.
Eggleston, H., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC guidelines for national greenhouse gas inventories.
Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. kdd,
Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka, J. O., Eke, C. I., & Akinyelu, A. A. (2022). A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects. Engineering Applications of Artificial Intelligence, 110, 104743.
Fahim, A. (2023). A varied density-based clustering algorithm. Journal of Computational Science, 66.
Gan, G., Ma, C., & Wu, J. (2020). Data clustering: theory, algorithms, and applications. SIAM.
Ghiani, G., & Improta, G. (2000). An efficient transformation of the generalized vehicle routing problem. European Journal of Operational Research, 122(1), 11-17.
Google, O.-T., Google Developers. (2023). Google OR-Tools. https://developers.google.com/optimization?hl=zh-tw
Guo, H., So, K., Simpson, I., Barletta, B., Meinardi, S., & Blake, D. (2007). C1–C8 volatile organic compounds in the atmosphere of Hong Kong: overview of atmospheric processing and source apportionment. Atmospheric environment, 41(7), 1456-1472.
Gurtu, A., Jaber, M. Y., & Searcy, C. (2015). Impact of fuel price and emissions on inventory policies. Applied Mathematical Modelling, 39(3-4), 1202-1216.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1), 10-18.
Hua, G., Cheng, T., & Wang, S. (2011). Managing carbon footprints in inventory management. International journal of production economics, 132(2), 178-185.
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2022). K-means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data. Information Sciences.
IPCC. (2007). A report of Working Group I of the Intergovernmental Panel on Climate Change: Summary for Policymakers. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4-wg1-spm-1.pdf
Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323.
Kara, M., Mangir, N., Bayram, A., & Elbir, T. (2014). A spatially high resolution and activity based emissions inventory for the metropolitan area of Istanbul, Turkey. Aerosol and Air Quality Research, 14(1), 10-20.
Liu, J., Li, J., Chen, Y., Lian, S., Zeng, J., Geng, M., Zheng, S., Dong, Y., He, Y., & Huang, P. (2023). Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management. Applied Energy, 331, 120407.
MacQueen, J. (1967). Classification and analysis of multivariate observations. 5th Berkeley Symp. Math. Statist. Probability,
Mallidis, I., Dekker, R., & Vlachos, D. (2012). The impact of greening on supply chain design and cost: a case for a developing region. Journal of Transport Geography, 22, 118-128.
Martínez, M. d. C. V., Santos-Jaén, J. M., Román, R. S., & Martín-Cervantes, P. A. (2022). Are gender and cultural diversities on board related to corporate CO2 emissions? Journal of Cleaner Production, 363, 132638.
McGregor, M. (2020). 8 Clustering Algorithms in Machine Learning that All Data Scientists Should Know. https://www.freecodecamp.org/news/8-clustering-algorithms-in-machine-learning-that-all-data-scientists-should-know/
Moghdani, R., Salimifard, K., Demir, E., & Benyettou, A. (2021). The green vehicle routing problem: A systematic literature review. Journal of Cleaner Production, 279, 123691.
Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. d., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., & Kram, T. (2000). Special report on emissions scenarios.
NING, L.-j., WANG, H.-y., & Xin, F. (2014). Research on online review-trust model and synthetical value model based on power-law and density clustering algorithm. The Journal of China Universities of Posts and Telecommunications, 21, 71-78.
Pan, S., Ballot, E., & Fontane, F. (2013). The reduction of greenhouse gas emissions from freight transport by pooling supply chains. International journal of production economics, 143(1), 86-94.
Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric environment, 77, 78-97.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 2825-2830.
Perera, T., Prakash, A., Wijesundera, D., Srikanthan, T., & Gamage, C. N. (2019). Cluster-First, Route-Second Heuristic for EV Scheduling in On-Demand Public Transit. 2019 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM),
Pop, P. C., Kara, I., & Marc, A. H. (2012). New mathematical models of the generalized vehicle routing problem and extensions. Applied Mathematical Modelling, 36(1), 97-107.
Putri, K. A., Rachmawati, N. L., Lusiani, M., & Redi, A. A. N. P. (2021). Genetic algorithm with cluster-first route-second to solve the capacitated vehicle routing problem with time windows: A case study. Jurnal Teknik Industri, 23(1), 75-82.
R Core Team, R. (2013). R: A language and environment for statistical computing.
Sander, J., Ester, M., Kriegel, H.-P., & Xu, X. (1998). Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data mining and knowledge discovery, 2, 169-194.
Schubert, E., Koos, A., Emrich, T., Züfle, A., Schmid, K. A., & Zimek, A. (2015). A framework for clustering uncertain data. Proceedings of the VLDB Endowment, 8(12), 1976-1979.
Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3), 1-21.
Sevaux, M., & Sörensen, K. (2008). Hamiltonian paths in large clustered routing problems. Proceedings of the EU/MEeting 2008 workshop on Metaheuristics for Logistics and Vehicle Routing, EU/ME,
Shahbaz, M., Tiwari, A. K., & Nasir, M. (2013). The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy policy, 61, 1452-1459.
Shahbazi, H., Reyhanian, M., Hosseini, V., & Afshin, H. (2016). The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: An emission inventory approach. Emission control science and technology, 2, 44-56.
Sheikholeslami, G., Chatterjee, S., & Zhang, A. (1998). Wavecluster: A multi-resolution clustering approach for very large spatial databases. VLDB,
statista. (2021). Distribution of carbon dioxide emissions produced by the transportation sector worldwide in 2021, by subsector. https://www.statista.com/statistics/1185535/transport-carbon-dioxide-emissions-breakdown/
Subramanian, A. (2012). Heuristic, exact and hybrid approaches for vehicle routing problems. Universidade Federal Fluminense, Niteroi, Sao Pablo, 60-69.
Tian, X., Huang, G., Song, Z., An, C., & Chen, Z. (2022). Impact from the evolution of private vehicle fleet composition on traffic related emissions in the small-medium automotive city. Science of The Total Environment, 840, 156657.
Ülkü, M. A. (2012). Dare to care: Shipment consolidation reduces not only costs, but also environmental damage. International journal of production economics, 139(2), 438-446.
UNFCCC. (1997). Kyoto Protocol - Targets for the first commitment period. https://unfccc.int/process-and-meetings/the-kyoto-protocol/what-is-the-kyoto-protocol/kyoto-protocol-targets-for-the-first-commitment-period
Vidal, T., Battarra, M., Subramanian, A., & Erdogˇan, G. (2015). Hybrid metaheuristics for the clustered vehicle routing problem. Computers & Operations Research, 58, 87-99.
Wang, W., Yang, J., & Muntz, R. (1997). STING: A statistical information grid approach to spatial data mining. Vldb,
Wang, Y., Assogba, K., Fan, J., Xu, M., Liu, Y., & Wang, H. (2019). Multi-depot green vehicle routing problem with shared transportation resource: Integration of time-dependent speed and piecewise penalty cost. Journal of Cleaner Production, 232, 12-29.
Xie, H., Tian, G., Chen, H., Wang, J., & Huang, Y. (2018). A distribution density-based methodology for driving data cluster analysis: A case study for an extended-range electric city bus. Pattern Recognition, 73, 131-143.
Xu, D., & Tian, Y. (2015). A comprehensive survey of clustering algorithms. Annals of Data Science, 2, 165-193.
Zhang, W., Gajpal, Y., Appadoo, S. S., & Wei, Q. (2020). Multi-depot green vehicle routing problem to minimize carbon emissions. Sustainability, 12(8), 3500.
周宜德, 曾振南, & 陳中邦. (2018). 台灣電動車產業政策與推廣措施之探討. 石油季刊, 54(3), 23-36.
陳致元, & 朱子豪. (2004). 以空間群聚分析探討單一物流中心車輛途程問題. 地理學報(37), 123-137.
韓復華, & 朱政威. (2010). 通勤交通車路線問題模式與巨集啟發式解法. 運輸計劃季刊, 39(2), 133-163.

無法下載圖示 全文公開日期 2033/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE