簡易檢索 / 詳目顯示

研究生: 林小景
Shian-Jing Lin
論文名稱: 含挫屈束制鋼板裝配式耐震梁柱接頭之實尺寸試體試驗行為
Seismic Experimental Investigation of Full-Scale Prefabricated Beam-to-Column Connections with Buckling Restrained Plates
指導教授: 蕭博謙
Po-chien Hsiao
口試委員: 陳正誠
Cheng-Cheng Chen
陳沛清
Pei-Ching Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 306
中文關鍵詞: 裝配式結構梁柱抗彎接頭韌性抗彎矩構架刀板接合
外文關鍵詞: Prefabricated Structures, Beam-to-column Moment Connection, Special Moment Resisting Frame, Knife-plate Connection
相關次數: 點閱:219下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

「韌性城市」(Urban Resilience)之概念與發展,現已在全球成為一重要趨勢,此趨勢亦促使世界各國爭相發展新型態之建築結構系統及其施工方法,以求實現韌性城市之推展。本研究主要目的為研究並開發一新型態之裝配式耐震梁柱接合設計,用以同時達到結構高耐震能力與快速搭建可能性;有別於過去抗彎矩構架中須透過現場銲接方式組裝,此裝配式梁柱接合設計採用單一接合板(即刀板接合, Knife-plate connection)構造連接梁端部與柱側拱頭構件,其中裝配式梁與柱構件皆於工廠內製作完畢後運送至現地以栓接連接組合,相較於現場銲接組裝施工,可大幅縮減結構組立工作之複雜性,即人力及工時成本。裝配式結構中於有韌性抗彎需求之梁柱接合,可於上述組裝後刀板接合兩側翼板處增設消能元件以提供構架遲滯消能,此消能元件採栓接方式便利安裝外,亦有利於災後拆換受損的消能元件。本研究係針對上述裝配式耐震梁柱接合之實際耐震性能進行一系列實尺寸梁柱接合構件試驗研究。試驗結果顯示刀板接合於較大樓層側位角下仍具備良好旋轉變形能力,且提供兩側消能元件及其束制元件對稱且穩定飽滿之遲滯行為。根據試驗結果建立有或無束制消能元件之降伏、挫屈及極限彎矩強度估算方法,並依據提出之強度估算方式建立裝配式耐震梁柱接合對應之設計及檢核流程,旨在完整開發此新型態的裝配式構架結構系統,促進最終「韌性城市」及「韌性結構」之目標達成。


The development of "Urban Resilience" has nowadays become an essential trend around the world. One of the strategies for the promotion of the resilience cities is through developing new types of building structural systems and construction methods. The main objective of this research is to research and develop a new type of prefabricated beam-column joint design to realize the high seismic function of the structure as well as improve the rapid construction and repairability; This new type of prefabricated joint design adopts a knife-plate connection design for connecting prefabricated beam and column members in the erection through bolts to achieve the rapid construction. Compared with the use of typical welded beam-to-column connections, the design would greatly reduce construction duration and labors. By assembling with energy dissipating elements at the beam flanges on both sides of the knife-plate connection, it forms a moment resisting connection with energy dissipation; in addition, if the energy dissipating element is damaged after the events, the structure could be repaired by simply replacing the energy dissipating element to achieve the goals of "Resilient structure". The study performed a series of full-size beam-to-column connection tests to verify the hysteretic energy dissipation and ductility behavior of the design. Moreover, a set of strength estimation formula was then proposed and validated by the test results. The test results verified that the proposed beam-to-column connection has provided symmetrical, stable and full hysteresis behavior, great ductility capability, and energy dissipation as a proposed restraining elements were applied or installed at the damper plates. For the design purpose, the estimation methods of the yield, buckling and ultimate moment strengths of the connection with or without restraining elements were established upon the experimental results in the study.

摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖片目錄 viii 照片目錄 xvi 第一章 緒論 1 1.1 研究背景 1 1.1 研究機與目的 1 1.2 論文內容及其構架 2 第二章 文獻回顧 3 2.1 切削式高韌性梁柱接頭 3 2.2 裝配式梁柱接頭 4 2.3 挫屈束制斜撐 5 2.4 斜撐構件之角撐板 6 第三章 含挫屈束制鋼板裝配式耐震梁柱接頭之實尺寸試體試驗 8 3.1 裝配式耐震刀板梁柱接頭之設計概念 8 3.2 挫屈束制鋼板之設計概念 9 3.3 試驗規劃 10 3.3.1 試體介紹 10 3.3.2 試驗配置 11 3.3.3 加載歷時 11 3.3.4 試驗設備 12 3.3.5 試體製作及安裝 13 3.3.6 材料試驗結果 14 3.4 實驗試體觀察與結果 14 3.4.1 試體Hb40t15 14 3.4.2 試體Hb40t15C(I) 15 3.4.3 試體Hb50t15 16 3.4.4 試體Hb50t15C(II) 17 3.4.5 試體Hb32t20 18 3.4.6 試體Hb32t20C(III) 18 3.4.7 試體Hb42t20 19 3.4.8 試體Hb42t20C(III) 20 3.4.9 試體Hb38t25 21 3.4.10 試體Hb38t25C(III) 21 3.4.11 試體Kb38t25C(III) 22 第四章 試驗結果與討論 24 4.1 試體之遲滯行為結果比較 24 4.2 試體之強度估算 26 4.3 韌性行為 31 4.3.1 塑性轉角 31 4.3.2 累積塑性變形 31 4.3.3 累積消散能量 32 4.4 設計流程 32 第五章 裝配式耐震梁柱接頭有限元素分析與研究 35 5.1 有限元素分析目的 35 5.2 有限元素模型介紹 35 5.3 分析結果與討論 38 第六章 結論與建議 40 6.1 結論 40 6.2 建議 41 參考文獻 42

[1]Sheng-Jin Chen, C.H.Yeh,J.M. Chu (1996) “Ductile Steel Beam-to-Column Connections for Seismic Resistance" ,Journal of Structure Engineering.
[2]陳誠直, 陳宣維, 鐘明達, (2003) “粱翼圓弧切削鋼骨梁柱接頭之耐震行為”, 中國土木水利工程學刊, 第十五卷 第一期
[3]Zi-qin Jiang , Tao Lan, Chao Dou, Ying-xia Wu, Hang Zhang (2019) “Cyclic loading tests of earthquake-resilient prefabricated cross joint with single flange cover plate”, Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Journal of Constructional Steel Research.
[4]Luqi Xie, Jing Wu, Jinyang Zhang, Chenyu Liu (2021) “Experimental study of mechanical properties of beam-column joint of a replaceable energy-dissipation connector-precast concrete frame”, The Key Laboratory on Concrete and Prestressed Concrete Structures of Ministry of Education, Journal of Building Engineering.
[5]Yingting Lu, Zixiong Guo, Syed Humayun Basha, Yang Liu(2022) “Performance of steel beams with replaceable buckling restrained fuses under cyclic loading”, Journal of Constructional Steel Research.
[6]Yujie Yuan, Hua Huang, Yanxia Ye, Ming Li, Hongye Sun (2022) “Performance coordination design method applied to replaceable artificial controllable plastic hinge for precast concrete beam-column joints”, Journal of Building Engineering.
[7]Sheng-Jin Chen, C.H.Yeh,J.M. Chu (1996) “Ductile Steel Beam-to-Column Connections for Seismic Resistance" ,Journal of Structure Engineering.
[8]陳正誠, (2008) ,鋼側撐BRB之設計與測試, 中華民國鋼結構協會會刊。
[9]藤井俊二, 田川浩, (2010) “丸鋼芯材を二重鋼管により座屈拘束したブレースに関する実験的研究”, 日本建築学会構造系論文集 第75巻 第650号 879-885
[10]Chou, C.C., Sheng-Yang Chen (2010). “Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces.” Engineering Structures.
[11]蔡克銓, 吳安傑, 林保均, 魏志毓, 莊明介,(2012) “槽接式挫屈束制支撐與脫層材料性能研究”, 結構工程 第 二 十 七 卷 第 三 期 第 29 - 59 頁
[12]吳安傑, 林保均, 莊明介, 蔡克銓,(2015) “挫屈束制支撐構架設計概要與工程應用”, 結構工程 第三十卷 第一期 第11‐33 頁
[13]Astaneh-Asl, A., S. C. Goel and R. D. Hanson “Cyclic Out-of-plane Buckling of Double Angle Bracing” ASCE Journal of the Structural Division, Vol.111, No. 5, May 1985 (pp. 1135-1153).
[14]AISC Seismic Provisions (2005) – Commentary C13. SCBF
[15]American Institute of Steel Construction, ANSI/AISC 341-16 “Seismic Provisions for Structural Steel Building”, 130 East Randolph Street, Suite 2000, Chicago, Illinois 60601.
[16]David Roylance (2001), “Stress-Strain Curves”, Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139
[17]內政部營建署 (2019) 鋼構造建築物鋼結構設計技術規範(二)鋼結構極限設計法規範及解說。

QR CODE