簡易檢索 / 詳目顯示

研究生: 林君達
Chun-Ta Lin
論文名稱: 低噪音風能轉換系統用永磁式同步發電機之設計及控制
Design and Control of Permanent Magnet Synchronous Generator for Low Noise Wind Energy Conversion Systems
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
林法正
Faa-Jeng Lin
吳瑞南
Ruay-Nan Wu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 142
中文關鍵詞: 風能轉換系統永磁式同步發電機交流—直流功率轉換器
外文關鍵詞: wind energy conversion system, permanent magnet synchronous generator, ac-dc power converter
相關次數: 點閱:225下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文旨在研製低噪音之風能發電系統。搭配低周速比之垂直軸風車設計一直驅式永磁同步發電機,以簡化傳動機構並減少損失與噪音。文中採用三相全橋全控交流—直流功率轉換器與單相直流—交流功率轉換器,將變動之風能轉換為可併聯於市電之電能,適合應用於人口稠密的都會區。
      永磁式同步發電機選用64 極60 槽之結構,其極槽比為1.0667,不但磁通利用率高,且能抑制頓轉矩之產生。藉由有限元素電磁場解析套裝軟體對齒槽及磁石作最佳化設計,降低反電動勢的總諧波失真率,以減少運轉時的電磁噪音及脈動轉矩。繞線部分採用單齒直繞之方式,可縮短線圈端長度以降低銅損,電機之運轉效率為0.94。另於轉子部分採用步階磁石的方式作等效斜列,將進一步降低頓轉矩含量及起動風速。整體設計之頓轉矩為額定轉矩之0.35 %。
      交流—直流功率轉換器部分使用三相六臂型架構,利用開關的設定,當三相永磁式同步發電機在低轉速時運轉於三相Y 接線架構;高轉速運轉下則為各相繞組獨立接線架構,使其直流鏈電壓維持固定範圍。故此三相六臂型交流—直流功率轉換器適用於較寬廣的風速範圍,可提高風能的利用率。另採用電流弦波控制使發電機電流操作為弦式波形,具有低電流諧波、高功率因數之優點,亦降低運轉之電磁噪音。
      本文之系統已完成MATLAB/Simulink 之整合模擬,驗證理論分析與控制法則之可行性。實作方面採用高性能及低成本的數位信號控制器TMS320F28335 為整體系統之核心,已完成200 W 的發電系統雛形,可提供實功率至市電網路。


      This thesis presents the design and implementation of low noise wind energy conversion system. A direct-driven permanent-magnet synchronous generator is proposed for the low tip-speed-ratio drag-type vertical axis wind turbine. It has the advantages of simplified drivetrain for reducing any transmission loss and noise. Combining three-phase full-bridge full-controlled ac-dc converter and single-phase dc-ac converter, the proposed system transforms varying wind energy to grid-connected electrical power. It is suitable for urban-environmental usage.
      A 64-pole, 60-slot permanent-magnet synchronous generator is chosen. The 1.0667 slot-to-pole ratio can not only achieve greater magnetic efficiency, but also reduce cogging torque. The optimum shape of magnets, stator teeth and slots, which is analyzed for lower EMF harmonic content from finite element analysis, can reduce electrical noise and torque ripple. With concentrated winding configuration, it results in short end-windings, lower copper loss and the generator efficiency of 0.94. Stepped magnet configuration with approximate skew strategy is then applied to reduce the cogging torque and start wind speed. Overall modifications may reduce the cogging torque to 0.35 % from rated torque.
      The ac-dc power converter has a six-leg structure; it is operated in three-phase wye-connection when generator runs at low speed, whereas three single-phase independent connection is exercised at high speed to keep dc-link voltage lying within the constant range. Therefore, the six-leg ac-dc power converter can generate electric power over a wide range of wind conditions. Meanwhile, using sinusoidal current control strategy will give low current harmonic distortion, higher power factor, and low electromagnetic noise.
      Full system simulation is first given using MATLAB/Simulink. Then, a high-performance and low-cost digital signal controller, TMS320F28335, is used to control the system. A prototype of 200 W wind energy conversion system is developed for single-phase grid-connected operation.

    摘  要.........................................................I ABSTRACT........................................................II 誌  謝.......................................................III 符號索引......................................................VIII 圖表索引.....................................................XVIII 第一章、緒論.....................................................1 1.1 動機及目的..................................................1 1.2 文獻探討....................................................2 1.3 系統架構及特色..............................................5 1.4 本文大綱....................................................9 第二章、低轉速永磁式同步發電機之設計及量測......................10 2.1 前言.......................................................10 2.2 三相永磁式同步發電機的設計.................................10 2.2.1 定子與轉子結構選擇.......................................11 2.2.2 磁性材料之選用...........................................13 2.2.3 三相永磁式同步發電機之繞組接線...........................17 2.2.4 永磁式同步發電機的分析...................................19 2.2.5 頓轉矩之改善.............................................31 2.3 永磁式同步發電機的轉速及位置回授裝置.......................34 2.3.1 轉速發電機的設計及量測...................................34 2.3.2 轉速及角位置估測.........................................37 2.4 永磁式同步發電機的量測.....................................40 2.5 結語.......................................................44 第三章、永磁式同步發電機之功率控制策略..........................45 3.1 前言.......................................................45 3.2 永磁式同步發電機的數學模式.................................45 3.3 三相交流—直流功率轉換器之模式與控制.......................51 3.3.1 三相全橋全控交流—直流功率轉換器之模式...................52 3.3.2 三相全橋全控交流—直流功率轉換器之控制策略...............54 3.4 各相繞組獨立接線之全橋全控交流—直流功率轉換器模式與控制...57 3.4.1 各相繞組獨立接線之全橋全控交流—直流功率轉換器模式.......57 3.4.2 各相獨立全橋全控交流—直流功率轉換器之控制策略...........60 3.5 結語.......................................................62 第四章、系統整合及最大功率追蹤控制策略..........................64 4.1 前言.......................................................64 4.2 系統整合...................................................64 4.2.1 垂直軸風車之特色.........................................64 4.2.2 風車模擬器之建立.........................................66 4.2.3 單相市電併網控制.........................................68 4.3 風能最大功率追蹤控制策略...................................72 4.4 系統之計算機模擬...........................................73 4.5 結語.......................................................73 第五章、實體製作及實測..........................................78 5.1 前言.......................................................78 5.2 數位信號控制器之介面規劃及硬體電路.........................78 5.2.1 數位信號控制器及其介面規劃...............................78 5.2.2 數位信號控制器介面電路...................................82 5.2.3 電壓回授電路.............................................83 5.2.4 電流回授電路.............................................85 5.2.5 智慧型功率模組之控制電路.................................86 5.3 控制軟體規劃及量化處理.....................................87 5.3.1 主程式流程...............................................87 5.3.2 轉速發電機之轉速及磁場角位置估測程式流程.................89 5.3.3 三相Y接線交流—直流功率轉換器之功率控制程式流程..........90 5.3.4 各相繞組獨立接線之交流—直流功率轉換器功率控制程式流程...90 5.3.5 單相市電併網功率控制程式流程.............................91 5.4 實測結果...................................................95 5.5 結語......................................................100 第六章、結論及建議.............................................101 6.1 結論......................................................101 6.2 未來研究方向..............................................102 參考文獻.......................................................103 附錄A 電壓量測及總諧波失真定義................................113 附錄B 64極60槽永磁式同步發電機規格表..........................115 附錄C 轉速發電機之設計規格....................................116 作者簡介.......................................................117

    [1] 呂威賢,「再生能源專題報導—風的故事」,科學發展月刊第383期,2004年。
    [2] 翁榮羨、呂威賢,「全球風力發電應用現況與國內開發展望」,台電工程月刊,第651期,第18 – 37頁,2002年11月。
    [3] S. H. Song, S. I. Kang and N. K. Hahm, “Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind Energy Conversion System,” Proceedings of Applied Power Electronics Conference and Exposition, vol. 1, pp. 154 – 158, 2003.
    [4] H. Polinder, F.F.A. van der Pijl, G.-J. de Vilder and P. Tavner, “Comparison of Direct-drive and Geared Generator Concepts for Wind Turbines,” IEEE International Conference on Electric Machines and Drives, pp. 543 – 550, 2005.
    [5] B. M. Nagai, K. Ameku and J. N. Roy, “Performance of a 3 kW Wind Turbine Generator with Variable Pitch Control System,” Applied Energy, vol. 86, no. 9, pp. 1774 – 1782, 2009.
    [6] G. Mller, M. F. Jentsch and E. Stoddart, “Vertical Axis Resistance Type Wind Turbines for Use in Buildings,” Renewable Energy, vol. 34, no. 5, pp. 1407 – 1412, 2009.
    [7] M. Yin, G. Li, M. Zhou and C. Zhao, “Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration,” Proceedings of the IEEE Power Engineering Society General Meeting, pp. 1 – 6, 2007.
    [8] A. G. Abo-Khalil and L. Dong-Choon, “Dynamic Modeling and Control of Wind Turbines for Grid-connected Wind Generation System,” IEEE Power Electronics Specialists Conference, pp. 1 – 6, 2006.
    [9] S. Heier, Grid Integration of Wind Energy Conversion Systems, Chicester, U.K.: Wiley, 1998.
    [10] W. Hu, Y. Wang, X. Song and Z. Wang, “Development of Wind Turbine Simulator for Wind Energy Conversion Systems Based on Permanent Magnet Synchronous Motor,” International Conference on Electrical Machines and Systems, pp. 2322 – 2326, 2008.
    [11] 王健宇,「風力發電系統之分析及模擬」,碩士論文,國立台灣科技大學電機工程研究所,2008年7月。
    [12] K. Xu, M. Hu, R. Y. Yan and W. Du, “Wind Turbine Simulator Using PMSM,” 42nd International Universities Power Engineering Conference, pp. 732 – 737, 2007.
    [13] A. P. Tennakoon, A. Atputharajah, S. G. Abeyratne and J. B. Ekanayake, “Doubly-Fed Induction Generators for Wind Power Generation,” International Conference on Industrial and Information Systems, pp. 135 – 140, 2007.
    [14] A. Binder and T. Schneider, “Permanent Magnet Synchronous Generators for Regenerative Energy Conversion - a Survey,” European Conference on Power Electronics and Applications, p. 10, 2005.
    [15] T. M. H. Nicky, K. Tan and S. Islam, “Mitigation of Harmonics in Wind Turbine Driven Variable Speed Permanent Magnet Synchronous Enerators,” The 7th International Power Engineering Conference, pp. 1159 – 1164, 2005.
    [16] J. Azzouzi, G. Barakat and B. Dakyo, “Analytical Modeling of an Axial Flux Permanent Magnet Synchronous Generator for Wind Energy Application,” IEEE International Conference on Electric Machines and Drives, pp. 1255 – 1260, 2005.
    [17] Z. Kai, H. M. Kojabadi, P. Z. Wang and C. Liuchen, “Modeling of a Converter-connected Six-phase Permanent Magnet Synchronous Generator,” International Conference on Power Electronics and Drives Systems, pp. 1096 – 1100, 2005.
    [18] P. Lampola, “Directly Driven Low Speed PM Generators for Wind Power Applications,” PhD Thesis, Acta Politechnica Scandinavica, Electrical engineering series, no.101, Espoo, 2000.
    [19] H. Li and Z. Chen, “Design Optimization and Site Matching of Direct-drive Permanent Magnet Wind Power Generator Systems,” Renewable Energy, vol. 34, no. 4, pp. 1175 – 1184, 2009.
    [20] M. Popesci, M. V. Cistelecan, L. Melcescu and M. Covrig, “Low Speed Directly Driven Permanent Magnet Synchronous Generators for Wind Energy Applications,” International Conference on Clean Electrical Power, pp. 784 – 788, 2007.
    [21] F. Wang, J. Bai, Q. Hou and J. Pan, “Design Features of Low Speed Permanent Magnet Generator Direct Driven by Wind Turbine,” Proceedings of the 8th International Conference on Electrical Machines and Systems, vol. 2, pp. 1017 – 1020, 2005.
    [22] R. J. Wang, M. J. Kamper, K. Van der Westhuizen and J. F. Gieras, “Optimal Design of a Coreless Stator Axial Flux Permanent Magnet Generator,” IEEE Transaction on Magnetics, vol. 41, pp. 55 – 64, 2005.
    [23] M. Ooshima, S. Kitazawa, T. Fukao and D. G. Dorrell, “Design and Analyses of a Coreless-stator-type Bearingless Motor/Generator for Clean Energy Generation and Storage Systems,” IEEE Transaction on Magnetics, vol. 42, pp. 3461 – 3463, 2006.
    [24] X. Y. Wang and J. J. Du, “Performance Analysis of a Wedgy Airgap Disk Coreless Permanent Magnet Synchronous Motor,” Mechatronics and Automation, pp. 1811 – 1816, 2006.
    [25] T. F. Chan and L. L. Lai, “An Axial-flux Permanent-Magnet Synchronous Generator for a Direct-Coupled Wind-Turbine System,” IEEE Transactions on Energy Conversion, vol. 22, pp. 86 – 94, 2007.
    [26] D. G. Dorrell, “Design Requirements for Brushless Permanent Magnet Generators for Use in Small Renewable Energy Systems,” 33rd Annual Conference of the IEEE Industrial Electronics Society, pp. 216 – 221, 2007.
    [27] J. Rizk and M. Nagrial, “Design of Permanent-magnet Generators for Wind Turbines,” IEEE Power Electronics and Motion Control Conference, vol. 1, no. 2, pp. 208 – 212, 2000.
    [28] Z. Q. Zhu, D. Howe, E. Bolte and B. Ackermann, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part I: Open-circuit Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.124 – 135, 1993.
    [29] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part II: Armature-Reaction Field,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 136 – 142, 1993.
    [30] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Brushless Permanent Magnet DC Motors, Part III: Effect of Stator Slotting,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp. 143 – 151, 1993.
    [31] Z. Q. Zhu and D. Howe, “Instantaneous Magnetic Field Distribution in Permanent Magnet Brushless DC Motors, Part IV: Magnetic Field on Load,” IEEE Transactions on Magnetics, vol. 29, no. 1, pp.152 – 158, 1993.
    [32] U. Kim and D. K. Lieu, “Magnetic Field Calculation in Permanent Magnet Motors with Rotor Eccentricity: With Slotting Effect Considered,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2253 – 2266, 1998.
    [33] U. Kim and D. K. Lieu, “Magnetic Field Calculation in Permanent Magnet Motors with Rotor Eccentricity: Without Slotting Effect,” IEEE Transactions on Magnetics, vol. 34, no. 4, pp. 2243 – 2252, 1998.
    [34] P. Zheng, J. Zhao, J. Han, J. Wang, Z. Yao and R. Liu, “Optimization of the Magnetic Pole Shape of a Permanent-Magnet Synchronous Motor,” IEEE Transactions on Magnetics, vol. 43, no. 6, pp. 2531 – 2533, 2007.
    [35] B. Štumberger, G. Štumbergera, M. Hadžiselimovića, A. Hamlera, V. Goričana, M. Jesenika and Mladen Trlepa, “Comparison of Torque Capability of Three-phase Permanent Magnet Synchronous Motors with Different Permanent Magnet Arrangement,” Journal of Magnetism and Magnetic Materials, vol. 316, no. 2, pp. e261 – e264, 2007.
    [36] Z. Q. Zhu, Z. P. Xia and D. Howe, “Comparison of Halbach Magnetized Brushless Machines Based on Discrete Magnet Segments or a Single Ring Magnet,” IEEE Transactions on Magnetics, vol. 38, no. 5, pp. 2997 – 2999, 2002.
    [37] E. Muljadi and J. Green, “Cogging Torque Reduction in a Permanent Magnet Wind Turbine Generator,” Proceedings of the 21st American Society of mechanical engineers wind energy symposium, 2002.
    [38] Z. Q. Zhu, S. Ruangsinchaiwanich, D. Ishak and D. Howe, “Analysis of Cogging Torque in Brushless Machines Having Nonuniformly Distributed Stator Slots and Stepped Rotor Magnets,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3910 – 3912, 2005.
    [39] Z. Q. Zhu and D. Howe, “Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines,” IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407 – 412, 2000.
    [40] Z. Q. Zhu, S. Ruangsinchaiwanich, Y.Chen and D. Howe, “Evaluation of Superposition Technique for Calculating Cogging Torque in Permanent-Magnet Brushless Machines,” IEEE Transactions on Magnetics, vol. 42, no. 5, pp. 1597 – 1603, 2006.
    [41] C. S. Koh, H. S. Yoon, K. W. Nam and H. S. Choi , “Magnetic Pole Shape Optimization of Permanent Magnet Motor for Reduction of Cogging Torque,” IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 1822 – 1827, 1997.
    [42] C. S. Koh and J.-S. Seol, “New Cogging-Torque Reduction Method for Brushless Permanent-Magnet Motors,” IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3503 – 3506, 2003.
    [43] Z. Q. Zhu and D. Howe, “Analytical Prediction of the Cogging Torque in Radial-field Permanent Magnet brushless Motors” IEEE Transactions on Magnetics, vol. 28, no. 2, pp. 1371 – 1374, 1992.
    [44] S. A. Saied, K. Abbaszadeh, S. Hemmati and M. Fadaie, “A New Approach to Cogging Torque Reduction in Surface-Mounted Permanent-Magnet Motors,” European Journal of Scientific Research, vol. 26, no. 4, pp. 499 – 509, 2009.
    [45] S. E. Skaar, O. Krovel and R. Nilssen, “Distribution, Coil-span and Winding Factors for PM Machines with Concentrated Windings”, International Conference Electrical Machines, 2006.
    [46] Z. Q. Zhu, D. Howe and J. K. Mitchell, “Magnetic Field Analysis and Inductances of Brushless DC Machines with Surface-Mounted Magnets and Non-Overlapping Stator Windings,” IEEE Transactions on Magnetics, vol. 31, no. 3, pp. 2115 – 2118, 1995.
    [47] D. Ishak, Z. Q. Zhu and D. Howe, “Comparison of PM Brushless Motors, Having Either All Teeth or Alternate Teeth Wound,” IEEE Transactions on Energy Conversion, vol. 21, no. 1, pp. 95 – 103, 2006.
    [48] J. A. Baroudi, V. Dinavahi and A. M. Knight, “A Review of Power Converter Topologies for Wind Generators,” IEEE International Conference on Electric Machines and Drives, pp. 458 – 465, 2005.
    [49] R. Ramakumar, H. J. Allison and W. L. Hughes, "Analysis of the Parallel-Bridge Rectifier System," IEEE Transactions on Industry Applications, vol. IA-9, no.4, pp. 425 – 436, 1973.
    [50] C. E. A. Silva, R. T. Bascope and D. S. Oliveira, “Three-phase Power Factor Correction Rectifier Applied to Wind Energy Conversion Systems,” 23rd Annual IEEE Applied Power Electronics Conference and Exposition, pp. 768 – 773, 2008.
    [51] 高永昌,「全橋半控型功率轉換器於風力發電系統之應用」,碩士論文,國立台灣科技大學電機工程研究所,2009年1月。
    [52] E. Koutroulis and K. Kalaitzakis, “Design of a Maximum Power Tracking System for Wind-energy-conversion Applications,” IEEE Transactions on Industrial Electronics, vol. 53, no. 2, pp. 486 – 494, 2006.
    [53] R. Esmaili, L. Xu and D. K. Nichols, “A New Control Method of Permanent Magnet Generator for Maximum Power Tracking in Wind Turbine Application,” IEEE of Power Engineering Society General Meeting, vol. 3, pp. 2090 – 2095, 2005.
    [54] N. P. W. Strachan and D. Jovcic, “Dynamic Modelling, Simulation and Analysis of an Offshore Variable-speed Directly-driven Permanent-magnet Wind Energy Conversion and Storage System (WECSS),” Europe of OCEANS, pp. 1 – 6, 2007.
    [55] 王建斌,「風力發電系統最大功率追蹤方法之研究」,碩士論文,中原大學電機工程研究所,民國94年。
    [56] M. G. Simoes, B. K. Bose and R. J. Spiegel, “Design and Performance Evaluation of a Fuzzy-logic-based Variable-speed Wind Generation System,” IEEE Transactions on Industry Applications, vol. 33, no. 4, pp. 956 – 965, 2001.
    [57] R. Chedid, F. Mrad and M. Basma, “Intelligent Control of a Class of Wind Energy Conversion Systems,” IEEE Transactions on Energy Conversion, vol. 14, no. 4, pp. 1597 – 1604, 1999.
    [58] A. Z. Mohamed, M. N. Eskander and F. A. Ghali, “Fuzzy Logic Control Based Maximum Power Tracking of a Wind Energy System,” Renewable Energy, vol. 23, pp. 235 – 245, 2001.
    [59] H. Li, K. L. Shi and P. G. McLaren, “Neural-network-based Sensorless Maximum Wind Energy Capture with Compensated Power Coefficient,” IEEE Transaction on Industry Applications, vol. 41, no. 6, pp. 1548 – 1556, 2005.
    [60] F. Blaschke, “The Principle of Field Orientation as Applied to The New Transect Closed Loop Control System for Rotating Field Machines,” Siemens Review, vol. 34, pp. 217 – 220, 1972.
    [61] P. Pillay and R. Krishnan, “Modeling of Permanent Magnet Motor Drives”, IEEE Transactions on Industrial Electronics, vol. 35, pp. 537 – 541, 1988.
    [62] S. Wekhande and V. Agarwal, “High-resolution Absolute Position Vernier Shaft Encoder Suitable for High-performance PMSM Servo Drives,” IEEE Transactions on Instrumentation and Measurement, vol 55, no. 1, pp. 357 – 364, 2006.
    [63] R. Hoseinnezhad and P. Harding, “Calibration of Resolver Sensors in Electromechanical Braking Systems: A modified recursive weighted least-squares approach,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 1052 – 1060, 2007.
    [64] 蘇長成,「風力發電系統之功率轉換器研製」,碩士論文,國立台灣科技大學電機工程研究所,2008年7月。
    [65] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, New Jersey: Prentice Hall Inc., 2001.
    [66] D. Hanselman, Brushless Permanent Magnet Motor Design 2/e, The Writer’s Collective, USA, 2003.
    [67] http://www.csc.com.tw/index.asp,中國鋼鐵公司。
    [68] 唐任遠等著,現代永磁電機理論與設計,機械工業出版社, 1997年,北京。
    [69] M.-F. Hsieh and Y.-S. Hsu, “An Investigation on Influence of Magnet Arc Shaping Upon Back Electromotive Force Waveforms for Design of Permanent-magnet Brushless Motors,” IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3949 – 3951, 2005.
    [70] M. V. Cistelecan and M. Popescu, “Study of the Number of Slots/Pole Combinations for Low Speed Permanent Magnet Synchronous Generators,” IEEE International Electric Machines & Drives Conference, vol.2, pp. 1616 – 1620, 2007.
    [71] 黃國華、陳鴻誠,「永磁電機頓轉轉矩之分析」,馬達數位學習網電子期刊,第72期,2004年。
    [72] 郭景全,「降低永磁無刷馬達頓轉轉矩之研究」,碩士論文,逢甲大學資訊電機工程研究所,2006年7月。
    [73] 劉昌煥著,交流電機控制,東華書局,第二版,2003年。
    [74] P. Pillay and R. Krishnan, “Modeling of Permanent Magnet Motor Drives”, IEEE Transactions on Industrial Electronics, vol. 35, No 4, pp. 537 – 541, 1988.
    [75] C.M. Ong, Dynamic Simulation of Electric Machinery, Prentice-Hall, 1998.
    [76] Z. Chen and E. Spooner, “Grid Power Quality with Variable Speed Wind Turbines,” IEEE Transactions on Energy Conversion, vol. 16, no. 2, pp. 148 – 154, 2001.
    [77] 蔣超奇、嚴強,「水平軸與垂直軸風力發電機的比較研究」,上海電力,2007年第二期,第163 – 165頁,2007年。
    [78] 黃鴻鈞,「旋轉中的新型垂直軸風力機葉片性能之數值分析」,碩士論文,國立台灣科技大學機械工程研究所,2009年1月。
    [79] 張銘,「單相換流器市電併網控制系統之研製」,碩士論文,國立台灣科技大學電機工程研究所,2009年7月。
    [80] TMS320F28335 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, 2008.
    [81] TMS320C28x CPU and Instruction Set Reference Guide, Texas Instruments, 2009.
    [82] TMS320x2833x, 2823x System Control and Interrupts Reference Guide, Texas Instruments Co., 2008.
    [83] TMS320x28xx, 28xxx Enhanced Pulse Width Modulator (ePWM) Module Reference Guide, Texas Instruments Co., 2007.
    [84] TMS320x2833x Analog-to-Digital Converter (ADC) Module Reference Guide, Texas Instruments, 2007.
    [85] TMS320x2833x, 2823x Enhanced Capture (ECAP) Module Reference Guide, Texas Instruments, 2008.
    [86] IPM L-series Application Note, Mitsubishi Electric, 2007.

    QR CODE