簡易檢索 / 詳目顯示

研究生: 余福恩
Fu-En Yu
論文名稱: 雙馬來醯亞胺/巴比妥酸之聚合反應動力學
Kinetics of polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 邱文英
Wen-Yen Chiu
黃炳照
Bing-Joe Hwang
黃延吉
Yan-Jyi Huang
潘金平
Jing-Pin Pan
許榮木
Jung-Mu Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 200
中文關鍵詞: 雙馬來醯亞巴比妥酸自由基加成聚合反應麥克加成反應反應動力學
外文關鍵詞: N, N’-bismaleimide-4, 4’-diphenylmethane
相關次數: 點閱:512下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的發展,許多高科技的電子產品小如行動電話、筆記型電腦,大如高科技電動車等,都需要配有高容量的儲電裝置。目前又以鋰離子電池最為普遍被使用。但是,在許多的意外事件中我們發現,鋰離子電池常有一些熱失控(爆炸、燃燒等)的問題,這些意外若是發生在小型行動裝置上可能只是造成使用者的灼傷,不過,在電動車意外中產生的熱危害,可能會照成使用者的傷亡。我國工業技術研究院材化所研究團隊研發出一鋰離子電池高分子添加劑(STOBA),藉由其材料的添加,在鋰電池發生熱失控時可以啟動材料的保護機制,阻斷電池繼續燃燒,減少災害的發生。然而,此材料(STOBA)的合成機制與聚合反應動力學一直無一個直接且有系統的研究。此研究論文之目的即在於有系統且詳細的對於雙馬來醯亞胺與巴比妥酸(即STOBA之原料)聚合反應動力學做深入的分析與探討,並提供未來有意從事相關研究與開發廠基本的反應動力學參數。


    The kinetics of polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane (BMI) and barbituric acid (BTA) was investigated in this study. The kinetic models for both Michael addition polymerization and free radical polymerization were successfully developed. First, the free radical polymerization of BMI with BTA was completely suppressed via the aid of adding sufficient HQ. In this manner, we could focus on the kinetics of Michael addition polymerization of BMI with BTA. A mechanistic model was then developed to adequately predict the polymerization kinetics before a critical conversion (ca. 60%), at which point the diffusion-controlled polymer reactions started to predominate in the latter stage of polymerization. The Michael addition polymerization rate constants and activation energy in the temperature range 383-423 K were determined accordingly and the effect of solvent proton affinity on the kinetics in different solvents (N-methyl-2-pyrrolidone (NMP), N,N’-dimethylacetamide (DMAC), and N,N’-dimethylformamide (DMF)) were also investigated.
    In the second part, with the knowledge of kinetic parameters of the Michael addition polymerization of BMI with BTA taken from our earlier work, kinetic parameters for free radical polymerization including the overall initiation rate constant and the combined propagation and termination rate constants were obtained. In addition, modeling results along with experimental gelation time data showed that contribution of free radical polymerization was promoted for the polymerization carried out at a higher reaction temperature and/or a larger molar ratio of BMI to BTA. By contrast, Michael addition polymerization was enhanced with a smaller molar ratio of BMI to BTA and/or a lower reaction temperature.
    Finally, to gain a fundamental understanding of the reactivity of the >CH2 and >NH groups of BTA toward the two terminal -C=C- groups of BMI, three model compounds (N-phenylmaleimide (PMI) containing one -C=C- group, 1,3-dimethylbarbituric acid (1,3DMBTA) containing one >CH2 group and 5,5-dimethylbarbituric acid (5,5DMBTA) containing two >NH groups per molecule) and a molecular probe (hydroquinone (HQ)) were chosen for further study. It was concluded that the >CH2 group of BTA provided the main active hydrogen atoms in the isothermal polymerization of BMI with BTA in N-methyl-2-pyrrolidone (NMP) in the temperature range 373-403 K. On the contrary, the two >NH groups of BTA did not contribute to polymerization of BMI with BTA to an appreciate extent.

    Contents Contents………………………………………………………………….I List of Tables…………………………………………………………..VI List of Schemes………………………………………………………VIII List of Figures…………………………………………………………..X Chapter 1 General introduction……………………………………………………1 1.1 Introduction to bismaleimide resins……………………………….1 1.2 Introduction to barbituric acid…………………………………….2 1.3 Reaction mechanisms of BMI/BTA………………………………..3 1.4 References…………………………………………………………...6 Chapter 2 Kinetics of Michael addition polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid……..8 Abstract………………………………………………………………….8 2.1 Introduction…………………………………………………………9 2.2 Experimental……………………………………………………….13 2.2.1 Materials…………………………………………...…………13 2.2.2 Polymerization kinetics and characterization…………….…..13 2.3 Results and discussion……………………………………………..18 2.3.1 Development of Michael addition polymerization kinetics model……………………………………………………………………18 2.3.2 Michael addition polymerization kinetics……………………21 2.3.3 Diffusion-controlled polymerization kinetics………………..34 2.4 Conclusions………………………………………………………...43 2.5 References………………………………………………………….44 Chapter 3 Effect of solvent proton affinity on the kinetics of Michael addition polymerization of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid…………………………………………………………46 Abstract………………………………………………………………...46 3.1 Introduction………………………………………………………..48 3.2 Experimental……………………………………………………….52 3.2.1 Materials……………………………………………………...52 3.3 Results and discussion……………………………………………..57 3.3.1 Michael addition polymerization kinetics model…………….57 3.3.2 Effect of solvent proton affinity on Michael addition polymerization kinetics…………………………………………………75 3.4 Conclusions………………………………………...………………86 3.5 References………………………………………………………….88 Chapter 4 Effects of initial composition and temperature on the kinetics of polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid…………………………………………………………90 Abstract………………………………………………………………...90 4.1 Introduction………………………………………………………..91 4.2 Experimental……………………………………………………….96 4.2.1 Materials……………………………………………………...96 4.2.2 Polymerization Kinetics and Characterization……………….96 4.3 Results and discussion……………………………………………104 4.3.1 Kinetic Model………………………………………..……...104 4.3.1.1 Free Radical Polymerization………………………….104 4.3.1.2 Michael Addition Polymerizations……………...……110 4.3.2 Kinetic Parameters of Free Radical Polymerization…………………….…………..……………………….112 4.3.3 Competition between Free Radical Polymerization and Michael Addition Polymerization………………………………………………130 4.4 Conclusions………………………………………...……………..142 4.5 References………………………………………………………...144 Chapter 5 How do hyperbranched polyimides form in polymerizations of N,N’-bismaleimide-4,4’-diphenylmethane with barbituric acid?…147 Abstract……………………………………………………………….147 5.1 Introduction………………………………………………………148 5.2 Experimental…………………………………………………...…151 5.2.1 Materials…………………………………………………….151 5.2.2 Heat of polymerization and characterization…………..……151 5.3 Results and discussion……………………………………………154 5.3.1 Kinetic parameters for Michael addition polymerization of BMI/1,3DMBTA (1/1 (mol/mol)) in DMAC ……………...…..……...154 5.3.2 Heat of reaction of BMI with BTA or BTA derivatives in NMP in the absence of HQ……………………...…..……………………….161 5.3.3 Heat of reaction of BMI with BTA or BTA derivatives in the presence of HQ in NMP………………………………………….……168 5.3.4 1H-NMR spectra…………………………………….………175 5.4 Conclusions………………………………………...……………..186 5.5 References………………………………………………………...188 Chapter 6 6.1 Conclusions……………………………………..………………...192 6.2 Outlooks…………………………………………………………..196   List of Tables Table 2.1. 1H-NMR results for the structure of BTA treated with HQ (HQ/BTA = 1/1 (w/w)) at 403 K for 1 h……………………………………………………………….28 Table 2.2. Reproducibility of the Michael addition polymerizations of BMI/BTA (2/1 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) and their reaction rate constants at different temperatures…………………………………………………...31 Table 2.3. Rheological data for the Michael addition polymerizations of BMI/BTA (2/1 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures for 1 h………………………………………………………….………41 Table 3.1. The least-squares best-fit results of f(t) and η(t) for the reaction of BTA with HQ (HQ/BTA = 1/1 (w/w)) in NMP at different temperatures……..…………72 Table 3.2. The least-squares best-fit results of f(t) for the reaction of BTA with HQ (HQ/BTA = 1/1 (w/w)) in DMAC at different temperatures………………………..73 Table 3.3. The least-squares best-fit results of f(t) for the reaction of BTA with HQ (HQ/BTA = 1/1 (w/w)) in DMF at different temperatures………………………….74 Table 3.4. Data of Ea and A for the Michael addition polymerizations of BMI/BTA (2/1 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) in different solvents.85 Table 4.1. Initial concentrations of reactants for polymerizations of BMI with BTA in NMP………………………………………………………………………………….97 Table 4.2. Nonlinear least-squares best-fitted results for XBCH = a – b e(-t/c) for the polymerization of PMI/BTA (4/1 (mol/mol)) in NMP at different temperatures. R2 is the coefficient of determination…………………………………………………….123 Table 4.3. Optimal kinetic parameters obtained from the MATLAB simulation work for free radical polymerizations of BMI with BTA in NMP at different temperatures………………………………………………………………………...126 Table 5.1. Optimal kinetic parameters for the Michael addition polymerization of BMI/1,3DMBTA (1/1 (mol/mol)) in DMAC at different temperatures…………....159 Table 5.2. Data of total heat of reaction per mole of –C=C– of BMI (ΔH) for polymerizations in the absence of HQ in NMP at different temperatures for 1 h…..167 Table 5.3. Data of total heat of reaction per mole of –C=C– of BMI (ΔH) for polymerizations in the presence of HQ in NMP at different temperatures for 1 h…174 Table 5.4. 1H-NMR results for the reactivity of PMI with active hydrogen atoms of >CH2 of 1,3DMBTA (PMI/1,3DMBTA = 2/1 (mol/mol)) and >NH groups of 5,5DMBTA (PMI/5,5DMBTA = 2/1 (mol/mol))…………………………………..184 List of Scheme Scheme 2.1. (a) The reaction mechanism involved in the Michael addition of the -C=C- group of BMI with the active hydrogen atom of the >CH2 group of BTA and (b) the reaction mechanism involved in the aza-Michael addition of the -C=C- group of BMI with the active hydrogen atom of the >NH group of BTA. The parameters k1 and k2 are the reaction rate constants, Keq the equilibrium constant, and B: and H-B♁ the base (or solvent) and the protonated base (or solvent), respectively…………….…..19 Scheme 4.1. The reaction mechanism of free radical polymerization of BMI initiated by BTA: (a) initiation reactions, (b) propagation reactions and (c) termination reactions…………………………………………………………………………….105 Scheme 4.2. Schematic representation of the three-dimensional crosslinked network structure obtained from free radical polymerization of BMI with BTA………..….131 Scheme 4.3. Schematic representation of the three-dimensional crosslinked network structure obtained from Michael addition polymerization of BMI with BTA. BMI/BTA (mol/mol) = (a) 4/1, (b) 2/1 and (c) 1/1…………………………………132 Scheme 5.1. The reaction mechanism involved in the Michael addition of the -C=C- group of BMI with the active hydrogen atom of the >CH2 group of BTA (or 1,3DMBTA). The parameter k2 is the reaction rate constants, Keq the equilibrium constant, and B: and H-B♁ the base (or solvent) and the protonated base (or solvent), respectively………………………………………………………………………….156 Scheme 5.2. Chemical structures of BTA, 1,3DMBTA and 5,5DMBTA………….160   List of Figures Figure 2.1. 1H-NMR spectra of (a) BTA and (b) BTA treated by HQ (HQ/BTA = 1/1 (w/w)) at 403 K over a period of 1 h…………………………………………………16 Figure 2.2. Calibration curve of the integral area of the characteristic peak of >NH at δ = 11.09 ppm (or that of >CH2 at δ = 3.46 ppm) versus the concentration of BTA in the absence of the HQ treatment……………………………………………………..17 Figure 2.3. Average total heat flow as a function of the amount of HQ for the isothermal polymerizations of BMI/BTA (2/1 (mol/mol)) at 423 K over a period of 1 h………………………………………………………………………………………24 Figure 2.4. Isothermal kinetic data obtained from the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures. (a) heat flow as a function of time profiles and (b) fractional conversion as a function of time curves……………………………………………...25 Figure 2.5. Natural logarithm of (θ-XM)/[θ(1-XM)] as a function of time plots for the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures. Temperature (K): (○, ●) 383, (◇, ◆) 393, (△, ▲) 403, (☆, ★) 413, (□, ■) 423. The solid or dashed line represents the least-squares best-fitted straight line passing through each set of the kinetic data obtained from the duplicate experiments………………………………..32 Figure 2.6. Natural logarithm of kM versus the reciprocal of temperature plot……..33 Figure 2.7. Fractional conversion as a function of time profiles for the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures. Temperature (K): (a) 383, (b) 403, (c) 423. The discrete points represent the experimental data, and the dashed and continuous lines the model predictions without and with the diffusion-controlled mechanism, respectively……………………………………………………………..38 Figure 2.8. Michael addition polymerization rate constant as a function of fractional conversion profiles for the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures. Temperature (K): (―) 383, (---) 403, (…) 423…………………………………….…42 Figure 3.1. Isothermal kinetic data obtained from the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) in NMP at different temperatures. Representative heat flow as a function of time profiles for (a) the polymerizations of BMI/BTA in the presence of HQ and (b) for the reactions between BTA and HQ……………………………………………………...61 Figure 3.2. Isothermal kinetic data obtained from the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)) at different temperatures. Solvents: (a) NMP (b) DMAC, (c) DMF. Temperature (K): (●, ○) 383, (◆, ◇) 393, (▲, △) 403, (★, ☆) 413, (■, □) 423. The continuous curves represent the best model prediction results…………………………………………..63 Figure 3.3. Representative profiles of (a) f(t) and (b) η(t) for the reaction between BTA and HQ in NMP at 403 (K). Refer to Table 3.1 for the detailed formulas……..66 Figure 3.4. The f(tf) versus T data for the reaction between BTA and HQ in different solvents: (●) NMP, (■) DMAC, (▲) DMF………………………………………….68 Figure 3.5. (a) Representative computer modeling results of the Michael addition polymerization of BMI/BTA in the presence of HQ in NMP at 403 K with the adjustable parameter kM (L mol-1 min-1) = (・・・) 7.0×10-2, (-) 3.7×10-2, (-・-) 2.0×10-2 and (b) the rates of consumption of the active hydrogen atoms of BTA via the competitive Michael addition reaction (corresponding to the term kM [BH] [M] in Eq. 3.4, see the continuous solid line) and the side reaction involving HQ (corresponding to the term -η(t) [BH]BTA/HQ,0 f’(t) in Eq. 3.4, see the dotted line)…...78 Figure 3.6. Natural logarithm of kM versus the reciprocal of temperature plot the polymerizations of BMI with BTA (BTA/BMI = 1/2 (mol/mol)) in the presence of HQ (HQ/BTA = 1/1 (w/w)). Solvents: (●) NMP, (■) DMAC, (▲) DMF…………...84 Figure 4.1. 1H-NMR spectra for the polymerization of PMI with BTA (PMI/BTA = 4/1 (mol/mol)). (a) fresh sample in the absence of polymerization and (b) sample polymerized at 403 K for 10 min…………………………………...………………101 Figure 4.2. Calibration curve of the integral area of the characteristic peak of the >CH2 group of BTA at δ = 3.46 ppm versus the weight ratio of BTA/DMSO-d6 prepared by mixing the fresh mixture of PMI/BTA (4/1 (mol/mol)) in NMP solution (total solids content = 20.46%) with different prescribed amounts of DMSO-d6….102 Figure 4.3. Heat flow as a function of time profiles for polymerizations of BMI with BTA in NMP at different temperatures. BMI/BTA (mol/mol) = (a) 1/1, (b) 2/1 and (c) 4/1. Continuous and dashed lines represent duplicate experiments to illustrate the reproducibility………………………………………………………………………113 Figure 4.4. Optimal computer simulation results for polymerizations of BMI with BTA in NMP at different temperatures. BMI/BTA (mol/mol) = (a) 1/1, (b) 2/1, (c) 4/1 and (d) the XBCH versus t profiles for the run with BMI/BTA(mol/mol) = 2/1. Discrete data points represent experimental results and continuous lines represent computer simulation results. T (K): (○) 373, (◇) 383, (△) 393, (□) 403…………………….118 Figure 4.5. Natural logarithm of "k" ̅ and ("k" _"i" ) ̅ versus the reciprocal of temperature plot. The experimental data collected in the Xt range 0-0.6 for the runs with BMI/BTA = 1/1 and 2/1 (mol/mol) and in the Xt range 0-0.5 for the run with BMI/BTA = 4/1 (mol/mol) were used in the computer modeling work………………….…………..129 Figure 4.6. Rp,R (or Rp,M) versus Xt profiles for polymerizations of BMI/BTA (= 1/1, 2/1 and 4/1 (mol/mol)) in NMP at (a) 373K and (b) 403K…………….……….…..136 Figure 4.7. The calculated Rp,R/Rp,M versus Xt data for polymerizations of BMI with BTA (BMI/BTA (mol/mol) = 1/1, 2/1 and 4/1) in NMP at 373 and 403 K……..…138 Figure 5.1. (a) Isothermal kinetic data obtained from polymerizations of BMI with 1,3DMBTA (BMI/1,3DMBTA = 1/1 (mol/mol)) in the presence of HQ (1,3DMBTA/HQ = 2/1 (w/w)) in DMAC at different temperatures. Temperature (K): (●, ○) 383, (◆, ◇) 393, (▲, △) 403, (★, ☆) 413, (■, □) 423. The continuous curves represent the best model prediction results. (b) Natural logarithm of kM,CH versus the reciprocal of temperature plot………………………………………………………157 Figure 5.2. Isothermal heat flow data as a function of time profiles obtained from polymerizations of (a) BMI/1,3DMBTA (1/1 (mol/mol)), (b) BMI/BTA (2/1)), (c) BMI/5,5DMBTA (1/1) and (d) thermal polymerization of BMI in the absence of HQ in NMP at different temperatures. Continuous and dashed lines represent duplicate experiments to illustrate the reproducibility……………………………….……….163 Figure 5.3. Isothermal heat flow data as a function of time profiles obtained from polymerizations of (a) BMI/1,3DMBTA (1/1 (mol/mol)), (b) BMI/BTA (2/1), (c) BMI/5,5DMBTA (1/1) and (d) thermal polymerization of BMI in the presence of HQ in NMP at different temperatures. Continuous and dashed lines represent duplicate experiments to illustrate the reproducibility…………….………………………….170 Figure 5.4. 1H-NMR spectra for (a) 1,3DMBTA in DMSO-d6 and (b) 5,5DMBTA in DMSO-d6 at room temperature; (c) PMI/1,3DMBTA in NMP/DMSO-d6 at room temperature and (d) PMI/1,3DMBTA in NMP reacted at 403 K for 1 h, followed by dilution with DMSO-d6 at room temperature; (e) PMI/5,5DMBTA in NMP/DMSO-d6 at room temperature and (f) PMI/5,5DMBTA in NMP reacted at 403 K for 1 h, followed by dilution with DMSO-d6 at room temperature……………..176

    Chapter 1 References
    1. C. R. Yang, J. P. Pan, C. A. Chen, J. M. Hsu, inventor; Industrial Technology Research Institute, assignee (2012). United States patent US 8137838 B2.
    2. T. Pascal, R. Mercier, B. Sillion, Polym. 30, 739 (1989).
    3. C. S. Wang, C. H. Lin, Polym. 40, 5665 (1999).
    4. K. Dušek, L. Matějka, P. Špaček, H. Winter, Polym. 37, 2233 (1996).
    5. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang, F. E. Yu, C. S. Chern, Polym. Eng Sci. 51, 1188 (2011).
    6. J. P. Pan, G. Y. Shiau, S. S. Lin, K. M. Chen, J. Appl. Polym. Sci. 45, 103 (1992).
    7. L. R. Dix, J. R. Ebdon, N. J. Flint, P. Hodge and R. O’dell, Eur. Polym. J., 31, 647 (1995).
    8. M.-F. Grenier-Loustalot and L. D. Chunha, Polymer, 39, 1799 (1998).
    9. Z. Shen, J. R. Schlup and L. T. Fan, J. Appl. Polym. Sci., 69, 1019 (1998).
    10. X. Zhang, F. S. Du, Z. C. Li and F. M. Li, Macromol. Rapid Commun., 22,983 (2001).
    11. Y. L. Liu, S. H. Tsai, C. S. Wu and R. J. Jeng, J. Polym. Sci. Part A: Polym. Chem., 42, 5921 (2004).
    12. M. Sava and C. V. Grigoras, J. Macromolecular Sci Part A: Pure and Applied Chemistry, 42, 1095 (2005).
    13. A. V. Baeyer, Ann. Chem. Pharm., 127, 199 (1863) .
    14. M. K. Carter, J. Chem. Educ., 28, 524 (1951).
    15. O. A. Argintaru, e-EROS Encyclopedia of Reagents for Organic Synthesis. Doi: 10.1002/047084289X.rn01256 (2011)
    16. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang and C. S. Chern, J. Appl. Polym. Sci., 117, 596 (2010).
    17. C. S. Chern, H. L. Su, J. M. Hsu, J. P. Pan, and T. H.Wang, "Understanding hyperbranched polymerization mechanisms," Plastics Research Online, Society of Plastics Engineers (SPE), 10.1002/spepro.003621 (2011).

    Chapter 2 References
    1. L. R. Dix, J. R. Ebdon, N. J. Flint, P. Hodge and R. O’dell, Eur. Polym. J., 31, 647 (1995).
    2. M.-F. Grenier-Loustalot and L. D. Chunha, Polymer, 39, 1799 (1998).
    3. Z. Shen, J. R. Schlup and L. T. Fan, J. Appl. Polym. Sci., 69, 1019 (1998).
    4. X. Zhang, F. S. Du, Z. C. Li and F. M. Li, Macromol. Rapid Commun., 22,983 (2001).
    5. Y. L. Liu, S. H. Tsai, C. S. Wu and R. J. Jeng, J. Polym. Sci. Part A: Polym. Chem., 42, 5921 (2004).
    6. M. Sava and C. V. Grigoras, J. Macromolecular Sci Part A: Pure and Applied Chemistry, 42, 1095 (2005).
    7. J. P. Pan, G. Y. Shiau, S. S. Lin and K. M. Chen, J. Appl. Polym. Sci., 45, 103 (1992).
    8. K. Dušek, L. Matějka, P. Špaček and H. Winter, Polymer, 37, 2233 (1996).
    9. X. Liu, D. Chen, X. Yang, L. Lu and X. Wang, Eur. Polym. J., 36, 2291 (2000).
    10. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang and C. S. Chern, J. Appl. Polym. Sci., 117, 596 (2010).
    11. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang, F. E. Yu and C. S. Chern, Polym. Eng. Sci., 51, 1188 (2011).
    12. C. S. Chern, H. L. Su, J. M. Hsu, J. P. Pan, and T. H.Wang, "Understanding hyperbranched polymerization mechanisms," Plastics Research Online, Society of Plastics Engineers (SPE), 10.1002/spepro.003621 (2011).
    13. M. Park and Y. Kim, Thin Solid Films, 363, 156 (2000).
    14. B. D. Mather, K. Viswanathan, K. M. Miller, T. Long, Prog. Polym. Sci., 31, 487 (2006).
    15. E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 27, 413 (1998).
    16. J. L. Hopewell, G. A. George and D. J. T. Hill, Polymer, 41, 8231 (2000).
    17. C. S. Chern and G. W. Poehlein, Polym.-Plast. Technol. Eng., 29, 577 (1990).

    Chapter 3 References
    1. J. P. Pan, G. Y. Shiau, S. S. Lin and K. M. Chen, J. Appl. Polym. Sci., 45, 103 (1992).
    2. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang, F. E. Yu and C. S. Chern, Polym. Eng. Sci., 51, 1188 (2011).
    3. C. S. Chern, H. L. Su, J. M. Hsu, J. P. Pan, and T. H.Wang, "Understanding hyperbranched polymerization mechanisms," Plastics Research Online, Society of Plastics Engineers (SPE), 10.1002/spepro.003621 (2011).
    4. H. L. Su, J. M. Hsu, J. P. Pan, T. H. Wang and C. S. Chern, J. Appl. Polym. Sci., 117, 596 (2010).
    5. F. E. Yu, J. M. Hsu, J. P. Pan, T. H. Wang and C. S. Chern, Polym. Eng. Sci., 53, 204 (2013).
    6. E. P. Hunter and S. G. Lias, J. Phys. Chem. Ref. Data, 27, 413 (1998).
    7. M. Park and Y. Kim, Thin Solid Films, 363, 156 (2000).
    8. B. D. Mather, K. Viswanathan, K. M. Miller, T. Long, Prog. Polym. Sci., 31, 487 (2006).
    9. J. L. Hopewell, G. A. George and D. J. T. Hill, Polymer, 41, 8231 (2000).
    10. P. Atkins and J. de Paula, Physical Chemistry, 9th ed., Oxford University Press, New York, 2010, pp. 848-849.

    Chapter 4 References
    1. Yang CR, Pan JP, Chen CA, Hsu JM, inventor; Industrial Technology Research Institute, assignee. Battery electrode paste composition containing modified materials. United States patent US 8137838 B2. 2012 Mar 20.
    2. Dix LR, Ebdon JR, Flint NJ, Hodge P, O’dell R. Chain extension and crosslinking of telechelic oligomers-i. michael additions of bisamines to bismaleimides and bis(acetylene ketone)s. Eur Polym J. 1995; 31: 647-52.
    3. Grenier-Loustalot MF, Chunha LD. Influence of steric hindrance on the reactivity and kinetics of molten-state radical polymerization of binary bismaleimide-diamine systems. Polymer. 1998; 39: 1799-814.
    4. Shen Z, Schlup JR, Fan LT, Synthesis and characterization of leather impregnated with bismaleimide (BMI) –jeffaminet® resins. J Appl Polym Sci. 1998; 69: 1019-27.
    5. Zhang X, Du FS, Li ZC, Li FM. Bismaleimides having electron-donating chromophore moieties: a new approach toward monitoring the process of curing based ontheirfluorescence behavior. Macromol Rapid Commun. 2001; 22: 983-7.
    6. Liu YL, Tsai SH, Wu CS, Jeng RJ. Preparation and characterization of hyperbranched polyaspartimides from bismaleimides and triamines. J Polym Sci Part A: Polym Chem. 2004; 42: 5921-8.
    7. Sava M, Grigoras CV. Bismaleimide monomers and polymers with ester and ether units. synthesis and properties. J Macromolecular Sci Part A: Pure and Appl. Chem. 2005; 42: 1095.
    8. Dušek K, Matějka L, Špaček P, Winter H. Network formation in the free-radical copolymerization of a bismaleimide and styrene. Polymer. 1996; 37: 2233-42.
    9. Su HL, Hsu JM, Pan JP, Wang TH, Yu FE, Chern CS. Kinetic and structural studies of the polymerization of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci. 2011; 51: 1188-97.
    10. Pan JP, Shiau GY, Lin SS, Chen KM. Effect of barbituric acid on the self-polymerization reaction of bismaleimides. J Appl Polym Sci. 1992; 45: 103-9.
    11. Su HL, Hsu JM, Pan JP, Wang TH, Chern CS. Effects of solvent basicity on free radical polymerizations of n,n’-bismaleimide-4,4’-diphenylmethane initiated by barbituric acid. J Appl Polym Sci. 2010; 117: 596-603.
    12. Yu FE, Hsu JM, Pan JP, Wang TH, Chern CS. Kinetics of michael addition polymerizations of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci. 2013; 53: 204-11.
    13. Yu FE, Hsu JM, Pan JP, Wang TH, Chern CS. Effect of solvent proton affinity on the kinetics of michael addition polymerization of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci. 2014; 54: 559-68.
    14. Hiemenz PC, Lodge TP. Polymer chemistry. 2nd ed. New York: CRC Press; 2007. p. 86-92.
    15. Park M, Kim Y. Schiff base receptor for salicylaldehyde and barbituric acid. Thin Solid Films. 2000; 363: 156-9.
    16. Chang JY, Kim TJ, Han M. N-phenylmaleimide polymers for secondorder nonlinear optics. Polymer. 1997; 38: 4651-56.
    17. Jia HW. Department of Chemistry, Chung Yuan University, private communication. 2013.

    Chapter 5 References
    1. Yang CR, Pan JP, Chen CA, Hsu JM, inventor; Industrial Technology Research Institute, assignee (2012) Battery electrode paste composition containing modified materials. United States patent US 8137838 B2.
    2. Dix LR, Ebdon JR, Flint NJ, Hodge P, O’dell R (1995) Chain extension and crosslinking of telechelic oligomers-i. michael additions of bisamines to bismaleimides and bis(acetylene ketone)s. Eur Polym J 31: 647-652.
    3. Hwang JZ, Chen CL, Huang CY, Yeh JT, Chen KN (2013) Green PU resin from an accelerated Non-isocyanate process with microwave radiation J Polym Res 20: 195-204.
    4. Grenier-Loustalot MF, Chunha LD (1998) Influence of steric hindrance on the reactivity and kinetics of molten-state radical polymerization of binary bismaleimide-diamine systems. Polym 39: 1799-1814.
    5. Shen Z, Schlup JR, Fan LT (1998) Synthesis and Characterization of Leather Impregnated with Bismaleimide (BMI) –Jeffaminet Resins. J Appl Polym Sci 69: 1019-1027.
    6. Gaina C, Ursache O, Gaina V, Varganici CD (2014) Poly(urethane-benzoxazine)s. J Ploym Res 21, 586-596.
    7. Patel HS, Patel SR, Dixit BC (2006) Novel Semi-Interpenetrating Polyimide Network Based on Acryl End Capped Oligoimides. J Ploym Res 13: 461-467.
    8. Chiang TH, Liu CY, Dai CY (2013) A study of the thermal, dielectric, and flame-retarding characteristics of various bismaleimide blended with halogen-free epoxy resin. J Ploym Res 20: 274-283.
    9. Liu YL, Tsai SH, Wu CS, Jeng RJ (2004) Preparation and characterization of hyperbranched polyaspartimides from bismaleimides and triamines. J Polym Sci Part A: Polym Chem 42: 5921-5928.
    10. Dušek K, Matějka L, Špaček P, Winter H (1996) Network formation in the free-radical copolymerization of a bismaleimide and styrene. Polym 37: 2233-2242.
    11. Liu X, Chen D, Yang X, Lu L, Wang X (2000) Polymerization of bismaleimide and maleimide monomers catalyzed by nanometer sized Na+/TiO2 Eur Polym J 36: 2291-2295.
    12. Pan JP, Shiau GY, Lin SS, Chen KM (1992) Effect of barbituric acid on the self-polymerization reaction of bismaleimides. J Appl Polym Sci 45: 103-109.
    13. Su HL, Hsu JM, Pan JP, Wang TH, Yu FE, Chern CS (2011) Kinetic and structural studies of the polymerization of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci 51: 1188-1197.
    14. Chern CS, Su HL, Hsu JM, Pan JP, Wang TH (2011) Understanding hyperbranched polymerization mechanisms. Society of Plastics Engineers (SPE). Doi: 10.1002/spepro.003621.
    15. Yu FE, Hsu JM, Pan JP, Wang TH, Chern CS (2013) Kinetics of michael addition polymerizations of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci 53: 204-211.
    16. Yu FE, Hsu JM, Pan JP, Wang TH, Chern CS (2014) Effect of solvent proton affinity on the kinetics of michael addition polymerization of n,n’-bismaleimide-4,4’-diphenylmethane with barbituric acid. Polym Eng Sci 54: 559-568.
    17. Al-Najjar HJ, Barakat A, Al-Majid AM, Mabkhot YN, Weber M, Ghabbour HA, Fun H-K (2014) A Greener, Efficient Approach to Michael Addition of Barbituric Acid to Nitroalkene in Aqueous Diethylamine Medium. Molecule 19: 1150-1162.
    18. Kolev T, Bakalska R, Seidel RW, Mayer-Figge H, Oppel IM, Spiteller M., Sheldrick WS, Koleva BB (2012) Novel codeinone derivatives via Michael addition of barbituric acids Tetrahedron: Asymmetry Tetra Asymm 20: 327-334.
    19. Azev Y, Oparina ED (2012) Reactions of unsubstituted quinoxaline with nucleophiles. Chem of Heterocycl Comp 47: 1306-1308.
    20. Park M, Kim Y (2000) Schiff base receptor for salicylaldehyde and barbituric acid. Thin Solid Films 363: 156-159.
    21. Barton JM, Harmerton I, Rose JB, Warner D (1992) Studies on a series of bis-arylimides containing four phenylene rings and their polymers: 3. Kinetic analysis of the thermal polymerizations. Polym 33: 3664-3669.
    22. Argintaru OA (2011) 1,3-Dimethylbarbituric Acid. e-EROS Encyclopedia of Reagents for Organic Synthesis. Doi: 10.1002/047084289X.rn01256
    23. HG Brittain (2007) Profiles of Drug Substances, Excipients and Related Methodology. Academic Press, online book.
    24. Yu FE, Lee HY, Hsu JM, Pan JP, Wang TH, Chern CS (2015) J Taiwan Inst Chem Eng available online. Doi: 10. 1016/j.jtice.2015.02.013

    QR CODE