簡易檢索 / 詳目顯示

研究生: 周小盈
Hsiao-Ying Chou
論文名稱: 製備智慧型複合水膠於感溫自癒及分解於生醫領域上之應用
Preparation of intelligent composite hydrogel for thermal-healing and dissolution in biomedical application
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 朱一民
何明樺
陳玉暄
林宣因
邱智瑋
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 109
語文別: 英文
論文頁數: 108
中文關鍵詞: 智能水凝膠互 穿網絡水凝膠熱 自 修復複合水凝膠
外文關鍵詞: smart hydrogel, IPN hydrogel, thermal-healing, composite hydrogel
相關次數: 點閱:347下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

“智能水凝膠(smart hydrogels)”的研究備受矚目。智能水膠是由混合(hybrid)高分子鏈段組成的三維網狀交聯結構,同時具有特殊組成和卓越設計的水膠,其性能和結構能夠響應各種環境而改變。智能水凝膠已在生物醫學領域具有優越的突破性進展於開發“自我修復(self-healing)"和“分解響應(solubility response)”的先進材料(advanced materials),其自愈性水膠可以延長材料的壽命以及減少維修費用,可逆響應水膠易於製備並且對生物組織有最小的侵入性。為實現其在生物醫學中的可行性,穩定的微觀結構和適用的機械強度是水凝膠的基礎,因此,複合水凝膠系統是有前景的系統能夠將兩種材料進行互補,從而產生協同效應具有優異的性能。主要重點是在複合水凝膠中開發具有單一或多重外部刺激響應的動態網絡結構。“自我修復”和“可逆響應”的智能複合水凝膠是將其無機或有機材料嵌入至軟性高分子水膠中組成,應用於特性分析,並傳遞生長因子以促進傷口癒合。
本論文具有兩個獨立的研究系統:第一項研究由聚乙烯醇(PVA)和氮化硼納米片(BNNSs)構成兩個互穿的交聯網絡,形成具有熱響應(thermo-responsive)的水凝膠系統。其此水凝膠具有熱自修復性(thermal-healing)以及增強機械性能(enhanced mechanical)的同時不會影響自愈的效能。結果顯示添加氮化硼納米片的聚乙烯醇水凝膠顯著增加水凝膠的玻璃化轉變溫度(Tg)和脹溶程度隨著溫度而成相依性(temperature-dependent swelling),證實這兩種材料之間的相容性佳,且對外部熱刺激具有敏感性。添加氮化硼納米片的聚乙烯醇水凝膠在熱自修復能力方面優於單網絡的聚乙烯醇水凝膠。當溫度高於玻璃化轉變溫度(Tg)時,水凝膠的熱能增加與水分流失,導致分子鏈段有較高的熱遷移率(thermal mobility)和自由體積(free volume)有利於斷裂處再次形成新的氫鍵。水凝膠中獨特的雙網絡結構賦予較高的水含量與優越的機械性能,由於水凝膠在變形期間,第二個網絡能夠有效地分散另一個網絡的能量與承載力量。總結,我們的研究設計聚乙烯醇水凝膠與氮化硼納米片結合,證實此系統結構能夠發揮加成效果於水凝膠的熱修復性能。
第二部分的研究,開發新型具有可逆、智能的互穿網絡水凝膠(IPN),由熱交聯網絡的泊洛沙姆407(Pluronic F127)作為鈣離子交聯網絡的藻酸鹽模板,可調控水膠的構像。此柔軟而有彈性的互穿網絡水凝膠即使吸收了大量傷口的組織液也能保持其形狀不被破壞,且水凝膠的外部是由較硬的藻酸鹽-鈣離子交聯網絡所組成,使其維持水凝膠的型態,以及促進包覆血管內皮生長因子(VEGF)的穩定性並且局部控制其釋放於傷口。拉曼光譜法證實了水凝膠的層狀結構,其結構在使用冷的磷酸鹽緩衝對傷口進行適度沖洗後具有可逆性。總結,上述結果證實這樣研究中所開發的互穿網絡水凝膠是有前瞻性的生長因子輸送系統和加速傷口癒合的智能敷。


There is growing research interest in "smart hydrogels". In general, smart hydrogels are 3D networks composed of hybrid cross-linked polymer chains. Meanwhile, the intelligent hydrogel with a specific composition and prominent design can undergo alternation of structures and property responding in the various environments. Intelligent hydrogels have found a breakthrough role in feasibility application in biomedical, including advanced materials further developed "self-healing" and "solubility response". The former can prolong the lifetime of materials and low-cost, the behind is in favor of easy fabrication and minimally invasive for biological tissue. To realize their feasibility application in biomedical, the stable microstructure and applicable mechanical strength are the foundation of hydrogels. Thus, composite hydrogel systems are the potential promising platform since complimentary of both materials while eliminating individual disadvantages, resulting in the generation of synergetic effects in desired superior properties. The main focus is to develop the dynamic network construction within the composite hydrogel that can respond to single or multiple external stimuli. A smart, "self-healing" and " solubility response" composite hydrogels composed of inorganic or organic materials embedded in soft polymer hydrogels for characteristic analysis, and delivery of growth factor for wound healing activity.
This dissertation is organized on the basis of two separate sections: the first section study, we aimed to create a thermo-responsive hydrogel that possessed thermal-healing and enhanced mechanical properties, without losing its self-healing capabilities, by employing two interpenetrating cross-linked networks of polyvinyl alcohol (PVA) and boron nitride nanosheets (BNNSs). We observed that addition of BNNSs significantly increased the glass transition temperature (Tg) and temperature-dependent swelling of PVA hydrogels, indicating a high compatibility between these two materials and a high thermal response to external stimuli. Our results suggest that PVA hydrogels combined with BNNSs outperform single-network PVA hydrogels in terms of thermal-healing capacity. As above Tg, the thermal energy gained during moisture loss leads to an increase in the thermal mobility of the polymer chains and in the free volume available for new hydrogen bonds at the fracture surface. This unique structure increases water content and confers better mechanical properties. Interestingly, this structure of the second network benefits the first PVA network during deformation by effectively dissipating energy and bearing force, and contrarily to single network PVA hydrogels. Taken together, our results show that combining PVA and BNNSs to create a hybrid structure, exerts a synergistic effect and successfully improves the thermal-healing performance of wet hydrogels.
In the section study, the aim of this study was to develop a novel, solubility, smart, interpenetrating polymeric network (IPN) by utilizing the thermosensitive network of pluronic F127 (PF127) as a template to regulate the conformation of calcium-ion-cross-linked alginate. We found that the IPN hydrogels formed soft and elastic thermosensitive networks, retaining their form even after absorbing a large amount of wound exudate. The exterior of the hydrogels was made up of a rigid calcium alginate network that supported the entire hydrogel, promoting the stability of the vascular endothelial growth factor (VEGF) payload and controlling its release when the hydrogel was applied topically to wounds. Raman spectroscopy confirmed the layered structure of the hydrogel, which was found to easily disintegrate even after moderate rinsing of the wound with cold phosphate-buffered saline. Taken together, these results show that the IPN hydrogel developed in this study could be a promising delivery platform for growth factors to accelerate wound-healing.

中文摘要 i Abstract ii Acknowledgment iv List of Figure iii List of Table vii List of Abbreviation viii Chapter 1 1 1.1 Introduction 1 1.2 Objective of the study 3 Chapter 2 4 Literature Review 4 2.1 Hydrogel 4 2.1.1 Classifications of hydrogels 5 2.1.1.1 Hydrogels based on source 5 2.1.1.2 According to polymeric composition 7 2.1.1.3 Crosslinking mechanism in hydrogels 9 2.1.1.4 Stimuli-sensitive hydrogels 10 2.1.2 Temperature-response hydrogel 11 2.1.2.1 Types of thermos-sensitive hydrogels 12 2.1.2.2 Pluronic-based hydrogel 13 2.1.3 Ionic cross-linked hydrogel 15 2.1.3.1 Alginate-based hydrogel 17 2.1.4 Crystalline domain formation hydrogel 18 2.1.4.1 Poly (vinyl alcohol) hydrogel 19 2.2 Composite hydrogel 21 2.2.1 Types of composite hydrogels 21 2.2.1.1 Inorganic-based composite hydrogels 22 2.2.1.1-1 Two-dimensional (2D) nanomaterials 23 2.2.1.1-2 Boron nitride 24 2.2.2. Applications of composite hydrogels 25 2.2.2.1 Self-healing and Responsive reversible hydrogel 26 2.2.2.2 Wound dressing 28 Chapter 3 31 Development of hydrogels with thermal-healing properties using a network of polyvinyl alcohol and boron nitride composites 31 3.1 Introduction 31 3.2 Experimental Section 34 3.2.1 Exfoliation and surface modification of BNNSs 34 3.2.2 BNNSs structural characterization 34 3.2.3 Preparation of PVA/BNNS hydrogel 34 3.2.4 Hydrogel characterization 35 3.2.5 Self-healing behaviors of hydrogel 35 3.3 Results and Discussion 36 3.3.1 Exfoliation and characterization of amino-modified BNNSs 36 3.3.2 Characterization analysis of PVA/BNNS hydrogels 41 3.3.3 Swelling properties and Self-healing capability of PVA/BNNSs hydrogels ……………………………………………………………………………..45 3.4 Conclusions 48 Chapter 4 49 Design of an Interpenetrating Polymeric Network Hydrogel Made of Calcium-Alginate from a Thermos-Sensitive Pluronic Template as a Thermal-Ionic Solubility Wound Dressing 49 4.1 Introduction 49 4.2 Experimental Section 51 4.2.1 Materials 51 4.2.2 Preparation of polymeric blended hydrogels 51 4.2.3 Sol-gel phase transition behavior 51 4.2.4 Physical characteristics 52 4.2.5 In vitro cytotoxicity test (MTT Assay) 52 4.2.6 In vitro VEGF release study 52 4.2.7 In vivo animal model 53 4.3 Results and Discussion 54 4.3.1 Characterization analysis of PF127/SA IPN hydrogel 54 4.3.1 In vitro Cytotoxicity Test and Release study 58 4.3.2 In vivo Wound Healing Effects 59 4.3.3 Conclusions 61 Chapter 5 General Summary 63 REFERENCES 64 APPENDIX: Supporting information 90

[1] Anamica, P.P. Pande, Polymer Hydrogels and Their Applications, International Journal of Materials Science 12 (2017).
[2] Q. Chai, Y. Jiao, X. Yu, Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them, Gels 3(1) (2017).
[3] N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa, Hydrogels in pharmaceutical formulations, European Journal of Pharmaceutics and Biopharmaceutics 50(1) (2000) 27-46.
[4] T. Billiet, M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, P. Dubruel, A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering, Biomaterials 33(26) (2012) 6020-6041.
[5] K.Y. Lee, D.J. Mooney, Hydrogels for Tissue Engineering, Chemical Reviews 101(7) (2001) 1869-1880.
[6] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnol Bioeng 111(3) (2014) 441-53.
[7] S. Utech, A.R. Boccaccini, A review of hydrogel-based composites for biomedical applications: enhancement of hydrogel properties by addition of rigid inorganic fillers, Journal of Materials Science 51(1) (2015) 271-310.
[8] E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review, J Adv Res 6(2) (2015) 105-21.
[9] K.R. Kamath, K. Park, Biodegradable hydrogels in drug delivery, Advanced Drug Delivery Reviews 11(1) (1993) 59-84.
[10] M.M. Elsayed, Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects, Journal of Polymers and the Environment 27(4) (2019) 871-891.
[11] M. Ermis, S. Calamak, G. Calibasi Kocal, S. Guven, N.G. Durmus, I. Rizvi, T. Hasan, N. Hasirci, V. Hasirci, U. Demirci, Chapter 15 - Hydrogels as a New Platform to Recapitulate the Tumor Microenvironment, in: J. Conde (Ed.), Handbook of Nanomaterials for Cancer Theranostics, Elsevier2018, pp. 463-494.
[12] S. Khan, A. Ullah, K. Ullah, N.-u. Rehman, Insight into hydrogels, Designed Monomers and Polymers 19(5) (2016) 456-478.
[13] S. Rafieian, H. Mirzadeh, H. Mahdavi, M.E. Masoumi, A review on nanocomposite hydrogels and their biomedical applications, Science and Engineering of Composite Materials 26(1) (2019) 154-174.
[14] K. Haraguchi, Nanocomposite hydrogels, Current Opinion in Solid State and Materials Science 11(3) (2007) 47-54.
[15] T. Nakajima, H. Furukawa, Y. Tanaka, T. Kurokawa, Y. Osada, J.P. Gong, True Chemical Structure of Double Network Hydrogels, Macromolecules 42 (2009) 2184-2189.
[16] K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials 27(18) (2006) 3413-3431.
[17] J.K. Carrow, A.K. Gaharwar, Bioinspired Polymeric Nanocomposites for Regenerative Medicine, Macromolecular Chemistry and Physics 216(3) (2015) 248-264.
[18] E.S. Gil, S.M. Hudson, Stimuli-reponsive polymers and their bioconjugates, Progress in Polymer Science 29(12) (2004) 1173-1222.
[19] F. Ullah, M.B. Othman, F. Javed, Z. Ahmad, H. Md Akil, Classification, processing and application of hydrogels: A review, Mater Sci Eng C Mater Biol Appl 57 (2015) 414-33.
[20] N. Das, PREPARATION METHODS AND PROPERTIES OF HYDROGEL: A REVIEW, 2013.
[21] A.M. Pethe, K.S. Yadav, Polymers, responsiveness and cancer therapy, Artificial Cells, Nanomedicine, and Biotechnology 47(1) (2019) 395-405.
[22] M. Ding, L. Jing, H. Yang, C.E. Machnicki, X. Fu, K. Li, I.Y. Wong, P.Y. Chen, Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems, Materials Today Advances 8 (2020) 100088.
[23] H.L. Lim, Y. Hwang, M. Kar, S. Varghese, Smart hydrogels as functional biomimetic systems, Biomater Sci 2(5) (2014) 603-618.
[24] A.M. Rosales, K.S. Anseth, The design of reversible hydrogels to capture extracellular matrix dynamics, Nat Rev Mater 1 (2016) 15012.
[25] Z. Tong, L. Jin, J.M. Oliveira, R.L. Reis, Q. Zhong, Z. Mao, C. Gao, Adaptable hydrogel with reversible linkages for regenerative medicine: Dynamic mechanical microenvironment for cells, Bioactive Materials 6(5) (2021) 1375-1387.
[26] R. Dimatteo, N.J. Darling, T. Segura, In situ forming injectable hydrogels for drug delivery and wound repair, Advanced drug delivery reviews 127 (2018) 167-184.
[27] S. Xue, Y. Wu, M. Guo, Y. Xia, D. Liu, H. Zhou, W. Lei, Self-healable poly(acrylic acid-co-maleic acid)/glycerol/boron nitride nanosheet composite hydrogels at low temperature with enhanced mechanical properties and water retention, Soft Matter 15(18) (2019) 3680-3688.
[28] U. Gulyuz, O. Okay, Self-Healing Poly(acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength, Macromolecules 47(19) (2014) 6889-6899.
[29] H.F. Darge, A.T. Andrgie, H.C. Tsai, J.Y. Lai, Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications, Int J Biol Macromol 133 (2019) 545-563.
[30] N.A. Peppas, B.V. Slaughter, M.A. Kanzelberger, 9.20 - Hydrogels, in: K. Matyjaszewski, M. Möller (Eds.), Polymer Science: A Comprehensive Reference, Elsevier, Amsterdam, 2012, pp. 385-395.
[31] A.S. Hoffman, Hydrogels for biomedical applications, Annals of the New York Academy of Sciences 944 (2001) 62-73.
[32] D. Kolodynska, A. Skiba, B. Gorecka, Z. Hubicki, Hydrogels from Fundaments to Application, (2016).
[33] M.M. Ghobashy, Superabsorbent, (2018).
[34] I. Neamtu, A.G. Rusu, A. Diaconu, L.E. Nita, A.P. Chiriac, Basic concepts and recent advances in nanogels as carriers for medical applications, Drug Deliv 24(1) (2017) 539-557.
[35] N. Das, PREPARATION METHODS AND PROPERTIES OF HYDROGEL: A REVIEW, Int. J. Pharm. Pharm. Sci., 2013, pp. 112-117.
[36] P.P. KALSHETTI, V.B. RAJENDRA, D.N. DIXIT, P.P. PAREKH, Hydrogels as a drug delivery system and applications: a review, International Journal of Pharmacy and Pharmaceutical Sciences 4 (2012) 1-7.
[37] M.J. Zohuriaan-Mehr, K. Kabiri, Superabsorbent Polymer Materials: A Review, Iranian Polymer 17(6) (2008) 451-477.
[38] M.J. Majcher, T. Hoare, Hydrogel Synthesis and Design, (2018) 1-41.
[39] G.D. Nicodemus, S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications, Tissue Eng Part B Rev 14(2) (2008) 149-65.
[40] K. Raemdonck, J. Demeester, S. De Smedt, Advanced nanogel engineering for drug delivery, Soft Matter 5(4) (2009) 707-715.
[41] L. Fliervoet, J.F. Engbersen, R. Schiffelers, W. Hennink, T. Vermonden, Polymers and hydrogels for local nucleic acid delivery, Journal of materials chemistry. B 6 36 (2018) 5651-5670.
[42] H.-Y. Chou, H.-C. Tsai, Development of hydrogels with thermal-healing properties using a network of polyvinyl alcohol and boron nitride composites, Materials Science and Engineering: C 118 (2021) 111364.
[43] F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. Akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, J Biol Eng 14 (2020) 8.
[44] H.Y. Chou, C.C. Weng, J.Y. Lai, S.Y. Lin, H.C. Tsai, Design of an Interpenetrating Polymeric Network Hydrogel Made of Calcium-Alginate from a Thermos-Sensitive Pluronic Template as a Thermal-Ionic Reversible Wound Dressing, Polymers (Basel) 12(9) (2020).
[45] L. Ruan, H. Zhang, H. Luo, J. Liu, F. Tang, Y.-K. Shi, X. Zhao, Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis, PNAS 106(13) (2009) 5105–5110.
[46] H. Wang, D. Mao, Y. Wang, K. Wang, X. Yi, D. Kong, Z. Yang, Q. Liu, D. Ding, Biocompatible fluorescent supramolecular nanofibrous hydrogel for long-term cell tracking and tumor imaging applications, Sci Rep 5 (2015) 16680.
[47] X.-S. Hu, R. Liang, G. Sun, Super-adsorbent hydrogel for removal of methylene blue dye from aqueous solution, Journal of Materials Chemistry A 6(36) (2018) 17612-17624.
[48] V. Van Tran, D. Park, Y.C. Lee, Hydrogel applications for adsorption of contaminants in water and wastewater treatment, Environ Sci Pollut Res Int 25(25) (2018) 24569-24599.
[49] F. Pinelli, L. Magagnin, F. Rossi, Progress in hydrogels for sensing applications: a review, Materials Today Chemistry 17 (2020) 100317.
[50] S.M. An, H. Ham, E.J. Choi, M.K. Shin, S.S. An, H.O. Kim, J.S. Koh, Primary irritation index and safety zone of cosmetics: retrospective analysis of skin patch tests in 7440 Korean women during 12 years, International journal of cosmetic science 36(1) (2014) 62-7.
[51] M. Bahram, N. Mohseni, M. Moghtader, An Introduction to Hydrogels and Some Recent Applications, (2016).
[52] I.M. El-Sherbiny, M.H. Yacoub, Hydrogel scaffolds for tissue engineering: Progress and challenges, Glob Cardiol Sci Pract 2013(3) (2013) 316-42.
[53] A.N. Leberfinger, D.J. Ravnic, A. Dhawan, I.T. Ozbolat, Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication, Stem Cells Transl Med 6(10) (2017) 1940-1948.
[54] L. Bian, C. Hou, E. Tous, R. Rai, R.L. Mauck, J.A. Burdick, The influence of hyaluronic acid hydrogel crosslinking density and macromolecular diffusivity on human MSC chondrogenesis and hypertrophy, Biomaterials 34(2) (2013) 413-421.
[55] Q. Zhang, Y. Zhao, S. Yan, Y. Yang, H. Zhao, M. Li, S. Lu, D.L. Kaplan, Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons, Acta Biomaterialia 8(7) (2012) 2628-2638.
[56] D. Vllasaliu, L. Casettari, R. Fowler, R. Exposito-Harris, M. Garnett, L. Illum, S. Stolnik, Absorption-promoting effects of chitosan in airway and intestinal cell lines: A comparative study, International Journal of Pharmaceutics 430(1) (2012) 151-160.
[57] C. Helary, A. Foucault-Bertaud, G. Godeau, B. Coulomb, M.M. Giraud Guille, Fibroblast populated dense collagen matrices: cell migration, cell density and metalloproteinases expression, Biomaterials 26(13) (2005) 1533-1543.
[58] K.E. Sung, G. Su, C. Pehlke, S.M. Trier, K.W. Eliceiri, P.J. Keely, A. Friedl, D.J. Beebe, Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices, Biomaterials 30(27) (2009) 4833-4841.
[59] M. Yamada, R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, M. Seki, Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions, Biomaterials 33(33) (2012) 8304-8315.
[60] S.H. Aswathy, U. Narendrakumar, I. Manjubala, Commercial hydrogels for biomedical applications, Heliyon 6(4) (2020) e03719.
[61] W. Zhao, X. Jin, Y. Cong, Y. Liu, J. Fu, Degradable natural polymer hydrogels for articular cartilage tissue engineering, Journal of Chemical Technology & Biotechnology 88(3) (2013) 327-339.
[62] J.F. Mano, G.A. Silva, H.S. Azevedo, P.B. Malafaya, R.A. Sousa, S.S. Silva, L.F. Boesel, J.M. Oliveira, T.C. Santos, A.P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends, J R Soc Interface 4(17) (2007) 999-1030.
[63] M. Verhulsel, M. Vignes, S. Descroix, L. Malaquin, D.M. Vignjevic, J.L. Viovy, A review of microfabrication and hydrogel engineering for micro-organs on chips, Biomaterials 35(6) (2014) 1816-32.
[64] A.S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews 64 (2012) 18-23.
[65] N.R. Patel, A.K. Whitehead, J.J. Newman, M.E. Caldorera-Moore, Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications, ACS Biomaterials Science & Engineering 3(8) (2017) 1494-1498.
[66] A. Pathak, S. Kumar, Independent regulation of tumor cell migration by matrix stiffness and confinement, Proc Natl Acad Sci U S A 109(26) (2012) 10334-10339.
[67] E.A. Kamoun, X. Chen, M.S. Mohy Eldin, E.-R.S. Kenawy, Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers, Arabian Journal of Chemistry 8(1) (2015) 1-14.
[68] S. Chauhan, Acrylic acid and methacrylic acid based hydrogels-A review, Der Chemica Sinica 6(1) (2015) 61-72.
[69] H.J. Lee, Hybrid Hydrogels for Tissue Engineering, Philosophy Bioengineering, Clemson University, 2015.
[70] Y. Berkovitch, D. Seliktar, Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis, Int J Pharm 523(2) (2017) 545-555.
[71] M. Patenaude, T. Hoare, Injectable, mixed natural-synthetic polymer hydrogels with modular properties, Biomacromolecules 13(2) (2012) 369-78.
[72] J. Li, W.R.K. Illeperuma, Z. Suo, J.J. Vlassak, Hybrid Hydrogels with Extremely High Stiffness and Toughness, ACS Macro Letters 3(6) (2014) 520-523.
[73] L. Chauhan, P. Thakur, S. Sharma, HYDROGELS: A REVIEW ON CLASSIFICATION, PREPARATION METHODS, PROPERTIES AND ITS APPLICATIONS, Indo Am. J. P. Sci 6(6) (2019) 13490-13503.
[74] A. Cretu, R. Gattin, L. Brachais, D. Barbier-Baudry, Synthesis and degradation of poly (2-hydroxyethyl methacrylate)-graft-poly (ε-caprolactone) copolymers, Polymer Degradation and Stability 83(3) (2004) 399-404.
[75] B. Kim, N.A. Peppas, Poly(ethylene glycol)-containing Hydrogels for Oral Protein Delivery Applications, Biomedical Microdevices 5(4) (2003) 333-341.
[76] A. Richter, G. Paschew, S. Klatt, J. Lienig, K.-F. Arndt, H.-J.P. Adler, Review on Hydrogel-based pH Sensors and Microsensors, Sensors 8 (2008) 561-581.
[77] Y.X. Zhang, F.P. Wu, M.Z. Li, E.J. Wang, pH switching on-off semi-IPN hydrogel based on cross-linked poly(acrylamide-co-acrylic acid) and linear polyallyamine, Polymer 46(18) (2005) 7695-7700.
[78] C. Alvarez-Lorenzo, A. Concheiro, A.S. Dubovik, N.V. Grinberg, T.V. Burova, V.Y. Grinberg, Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties, Journal of controlled release : official journal of the Controlled Release Society 102(3) (2005) 629-41.
[79] L. Yang, J.S. Chu, J.A. Fix, Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation, Int J Pharm 235(1-2) (2002) 1-15.
[80] J.W. Lee, S.Y. Kim, S.S. Kim, Y.M. Lee, K.H. Lee, S.J. Kim, Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid), Journal of Applied Polymer Science 73(1) (1999) 113-120.
[81] N. Karak, 1 - Fundamentals of polymers, in: N. Karak (Ed.), Vegetable Oil-Based Polymers, Woodhead Publishing2012, pp. 1-30.
[82] S. Garg, A. Garg, Hydrogel: Classification, Properties, Preparation and Technical Features, Asian Journal of Biomaterial Research 2(6) (2016) 163-170.
[83] E.S. Dragan, Design and applications of interpenetrating polymer network hydrogels. A review, Chemical Engineering Journal 243 (2014) 572-590.
[84] T.R. Hoare, D.S. Kohane, Hydrogels in drug delivery: Progress and challenges, Polymer 49(8) (2008) 1993-2007.
[85] Y.-S. Ye, J. Rick, B.-J. Hwang, Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells, Polymers 4(2) (2012) 913-963.
[86] M.C. Hacker, A.G. Mikos, Synthetic Polymers, (2011) 587-622.
[87] H. Tan, K.G. Marra, Injectable, Biodegradable Hydrogels for Tissue Engineering Applications, Materials (Basel) 3(3) (2010) 1746-1767.
[88] R. Parhi, Cross-Linked Hydrogel for Pharmaceutical Applications: A Review, Adv Pharm Bull 7(4) (2017) 515-530.
[89] S.M.H. Bukhari, S. Khan, M. Rehanullah, N.M. Ranjha, Synthesis and Characterization of Chemically Cross-Linked Acrylic Acid/Gelatin Hydrogels: Effect of pH and Composition on Swelling and Drug Release, International Journal of Polymer Science 2015 (2015) 1-15.
[90] J. George, C.-C. Hsu, L.T. Nguyen, H. Ye, Z. Cui, Neural tissue engineering with structured hydrogels in CNS models and therapies, Biotechnology Advances 42 (2019).
[91] T. Miyazaki, Y. Takeda, S. Akane, T. Itou, A. Hoshiko, K. En, Role of boric acid for a poly (vinyl alcohol) film as a cross-linking agent: Melting behaviors of the films with boric acid, Polymer 51(23) (2010) 5539-5549.
[92] E.A. Kamoun, E.-R.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, Journal of Advanced Research 8(3) (2017) 217-233.
[93] M. Kawase, N. Michibayashi, Y. Nakashima, N. Kurikawa, K. Yagi, T. Mizoguchi, Application of glutaraldehyde-crosslinked chitosan as a scaffold for hepatocyte attachment, Biological & pharmaceutical bulletin 20(6) (1997) 708-10.
[94] T. Hongbo, L. Yanping, S. Min, W. Xiguang, Preparation and property of crosslinking guar gum, Polymer Journal 44(3) (2012) 211-216.
[95] R. López-Cebral, P. Paolicelli, V. Romero-Caamaño, B. Seijo, M.A. Casadei, A. Sanchez, Spermidine-cross-linked hydrogels as novel potential platforms for pharmaceutical applications, Journal of pharmaceutical sciences 102(8) (2013) 2632-43.
[96] X. Xu, Y. Weng, L. Xu, H. Chen, Sustained release of Avastin® from polysaccharides cross-linked hydrogels for ocular drug delivery, Int J Biol Macromol 60 (2013) 272-6.
[97] N.S. Raut, P.R. Deshmukh, M.J. Umekar, N.R. Kotagale, Zinc cross-linked hydroxamated alginates for pulsed drug release, Int J Pharm Investig 3(4) (2013) 194-202.
[98] M.O. Taha, W. Nasser, A. Ardakani, H.S. Alkhatib, Sodium lauryl sulfate impedes drug release from zinc-crosslinked alginate beads: switching from enteric coating release into biphasic profiles, Int J Pharm 350(1-2) (2008) 291-300.
[99] T. Coviello, M. Grassi, R. Lapasin, A. Marino, F. Alhaique, Scleroglucan/borax: characterization of a novel hydrogel system suitable for drug delivery, Biomaterials 24(16) (2003) 2789-2798.
[100] V.M. Pathak, N. Kumar, Dataset on the superabsorbent hydrogel synthesis with SiO2 nanoparticle and role in water restoration capability of agriculture soil, Data in Brief 13 (2017) 291-294.
[101] A.E. Sherr, A.M. Swift, Crosslinked polyacrylamide gel as a dehydrating agent, Journal of Applied Polymer Science 9(12) (1965) 3929-3934.
[102] J.M. Knipe, N.A. Peppas, Multi-responsive hydrogels for drug delivery and tissue engineering applications, Regen Biomater 1(1) (2014) 57-65.
[103] L. Altomare, L. Bonetti, C.E. Campiglio, L. De Nardo, L. Draghi, F. Tana, S. Fare, Biopolymer-based strategies in the design of smart medical devices and artificial organs, Int J Artif Organs 41(6) (2018) 337-359.
[104] S. Wang, J.M. Lee, W.Y. Yeong, Smart hydrogels for 3D bioprinting, International Journal of Bioprinting (2015).
[105] L. Chen, Z. Tian, Y. Du, Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices, Biomaterials 25(17) (2004) 3725-32.
[106] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews 53 (2001) 321–339.
[107] R. Chandrawati, Enzyme-responsive polymer hydrogels for therapeutic delivery, Exp Biol Med (Maywood) 241(9) (2016) 972-979.
[108] R.V. Ulijn, N. Bibi, V. Jayawarna, P.D. Thornton, S.J. Todd, R.J. Mart, A.M. Smith, J.E. Gough, Bioresponsive hydrogels, Materials Today 10(4) (2007) 40-48.
[109] Y. Zhao, X. Du, L. Jiang, H. Luo, F. Wang, J. Wang, L. Qiu, L. Liu, X. Liu, X. Wang, P. Jiang, J. Wang, Glucose Oxidase-Loaded Antimicrobial Peptide Hydrogels: Potential Dressings for Diabetic Wound, Journal of Nanoscience and Nanotechnology 20 (2020) 2087-2094.
[110] X. Chen, P. Yuan, Z. Liu, Y. Bai, Y. Zhou, Dual responsive hydrogels based on functionalized mesoporous silica nanoparticles as an injectable platform for tumor therapy and tissue regeneration, Journal of materials chemistry. B 5(30) (2017) 5968-5973.
[111] S. Dwivedi, Hydrogel-A Conceptual Overview, International Journal of Pharmaceutical & Biological Archive 2 (2011).
[112] D. Quintanar-Guerrero, B.N. Zorraquín-Cornejo, A. Ganem-Rondero, E. Piñón-Segundo, M.G. Nava-Arzaluz, J.M. Cornejo-Bravo, Controlled Release of Model Substances from pH-Sensitive Hydrogels, Journal of the Mexican Chemical Society 52 (2008) 272-278.
[113] V. Ozturk, O. Okay, Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior, Polymer 43(18) (2002) 5017-5026.
[114] M.A. Saleem, S.K. Azharuddin, S. Ali, C.C. Patil, Studies on different chitosan polyelectrolyte complex hydrogels for modified release of diltiazem hydrochlorid, International Journal of Pharmacy and Pharmaceutical Sciences 2 (2010) 64-67.
[115] J.J. Kang Derwent, W.F. Mieler, Thermoresponsive hydrogels as a new ocular drug delivery platform to the posterior segment of the eye, Transactions of the American Ophthalmological Society 106 (2008) 206-13; discussion 213-4.
[116] A.A. Aimetti, A.J. Machen, K.S. Anseth, Poly(ethylene glycol) hydrogels formed by thiol-ene photopolymerization for enzyme-responsive protein delivery, Biomaterials 30(30) (2009) 6048-6054.
[117] J. Bünsow, D. Johannsmann, Electrochemically produced responsive hydrogel films: Influence of added salt on thickness and morphology, Journal of Colloid and Interface Science 326(1) (2008) 61-65.
[118] R.A. Gemeinhart, J. Chen, H. Park, K. Park, pH-sensitivity of fast responsive superporous hydrogels, Journal of biomaterials science. Polymer edition 11(12) (2000) 1371-80.
[119] X. Zeng, H. Jiang, Tunable liquid microlens actuated by infrared light-responsive hydrogel, Applied Physics Letters 93(15) (2008) 151101.
[120] L.G.J. de Leede, A.G. de Boer, E. Pörtzgen, J. Feijen, D.D. Breimer, Rate-controlled rectal drug delivery in man with a hydrogel preparation, Journal of Controlled Release 4(1) (1986) 17-24.
[121] S. Gunasekaran, T. Wang, C. Chai, Swelling of pH-sensitive chitosan–poly(vinyl alcohol) hydrogels, Journal of Applied Polymer Science 102(5) (2006) 4665-4671.
[122] S. Murdan, Electro-responsive drug delivery from hydrogels, Journal of Controlled Release 92(1) (2003) 1-17.
[123] R. Masteiková, Z. Chalupová, Z. Sklubalová, Stimuli-sensitive hydrogels in controlled and sustained drug delivery, Medicina (Kaunas, Lithuania) 39 Suppl 2 (2003) 19-24.
[124] L. Klouda, A.G. Mikos, Thermoresponsive hydrogels in biomedical applications, Eur J Pharm Biopharm 68(1) (2008) 34-45.
[125] M. Ye, P. Mohanty, G. Ghosh, Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables, Mater Sci Eng C Mater Biol Appl 42 (2014) 289-94.
[126] E. Ruel-Gariepy, J.C. Leroux, In situ-forming hydrogels--review of temperature-sensitive systems, Eur J Pharm Biopharm 58(2) (2004) 409-26.
[127] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Advanced Drug Delivery Reviews 53(3) (2001) 321-339.
[128] M. Behl, J. Zotzmann, A. Lendlein, Shape-Memory Polymers and Shape-Changing Polymers, in: A. Lendlein (Ed.), Shape-Memory Polymers, Springer Berlin Heidelberg, Berlin, Heidelberg, 2010, pp. 1-40.
[129] H.G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application, Progress in Polymer Science 17(2) (1992) 163-249.
[130] M. Qiao, D. Chen, X. Ma, H. Hu, Sustained release of bee venom peptide from biodegradable thermosensitive PLGA-PEG-PLGA triblock copolymer-based hydrogels in vitro, Die Pharmazie 61(3) (2006) 199-202.
[131] H. Katono, A. Maruyama, K. Sanui, N. Ogata, T. Okano, Y. Sakurai, Thermo-responsive swelling and drug release switching of interpenetrating polymer networks composed of poly(acrylamide-co-butyl methacrylate) and poly (acrylic acid), Journal of Controlled Release 16(1) (1991) 215-227.
[132] A.T. Andrgie, S.L. Mekuria, K.D. Addisu, B.Z. Hailemeskel, W.H. Hsu, H.C. Tsai, J.Y. Lai, Non-Anticoagulant Heparin Prodrug Loaded Biodegradable and Injectable Thermoresponsive Hydrogels for Enhanced Anti-Metastasis Therapy, Macromolecular bioscience 19(5) (2019) e1800409.
[133] Y.Y. Li, L. Li, H.Q. Dong, X.J. Cai, T.B. Ren, Pluronic F127 nanomicelles engineered with nuclear localized functionality for targeted drug delivery, Mater Sci Eng C Mater Biol Appl 33(5) (2013) 2698-707.
[134] S. Shimabayashi, A. Ichimori, T. Hino, Interaction and Complex Formation of Pluronic Polymers with Ionic Surfactants, in: Y. Iwasawa, N. Oyama, H. Kunieda (Eds.), Studies in Surface Science and Catalysis, Elsevier2001, pp. 133-136.
[135] R.M. Ottenbrite, R. Javan, Biological Structures, in: F. Bassani, G.L. Liedl, P. Wyder (Eds.), Encyclopedia of Condensed Matter Physics, Elsevier, Oxford, 2005, pp. 99-108.
[136] R.A. Shirwaiker, M.F. Purser, R.A. Wysk, 6 - Scaffolding hydrogels for rapid prototyping based tissue engineering, in: R. Narayan (Ed.), Rapid Prototyping of Biomaterials, Woodhead Publishing2014, pp. 176-200.
[137] Y.-l. Su, J. Wang, H.-z. Liu, Melt, Hydration, and Micellization of the PEO–PPO–PEO Block Copolymer Studied by FTIR Spectroscopy, Journal of Colloid and Interface Science 251(2) (2002) 417-423.
[138] L. Yang, P. Alexandridis, Physicochemical aspects of drug delivery and release from polymer-based colloids, Current Opinion in Colloid & Interface Science 5(1) (2000) 132-143.
[139] H.H. Bearat, B.L. Vernon, 11 - Environmentally responsive injectable materials, in: B. Vernon (Ed.), Injectable Biomaterials, Woodhead Publishing2011, pp. 263-297.
[140] N.U. Khaliq, D.Y. Park, B.M. Yun, D.H. Yang, Y.W. Jung, J.H. Seo, C.S. Hwang, S.H. Yuk, Pluronics: Intelligent building units for targeted cancer therapy and molecular imaging, Int J Pharm 556 (2019) 30-44.
[141] E. Russo, C. Villa, Poloxamer Hydrogels for Biomedical Applications, Pharmaceutics 11(12) (2019).
[142] A. Pitto-Barry, N.P.E. Barry, Pluronic® block-copolymers in medicine: from chemical and biological versatility to rationalisation and clinical advances, Polym. Chem. 5(10) (2014) 3291-3297.
[143] G. Gyulai, A. Magyar, J. Rohonczy, J. Orosz, M. Yamasaki, S. Bosze, E. Kiss, Preparation and characterization of cationic Pluronic for surface modification and functionalization of polymeric drug delivery nanoparticles, Express Polymer Letters 10(3) (2016) 216-226.
[144] A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, Pluronic block copolymers for overcoming drug resistance in cancer, Adv Drug Deliv Rev 54(5) (2002) 759-79.
[145] K.A. Ramya, J. Kodavaty, P. Dorishetty, M. Setti, A.P. Deshpande, Characterizing the yielding processes in pluronic-hyaluronic acid thermoreversible gelling systems using oscillatory rheology, Journal of Rheology 63(2) (2019) 215-228.
[146] N. Sharma, pluronic F127 as thermoreversible polymer gel forming agent for delivery of drug, Research Journal of Pharmacy and Technology 3 (2010) 700-705.
[147] J.J. Escobar-Chávez, M. López-Cervantes, Y.N.K. A. Naïk2, D. Quintanar-Guerrero, A. Ganem-Quintanar, Applications of thermo-reversible Pluronic F-127 gels in pharmaceutical formulations, J Pharm Pharmaceut Sci 9(3) (2006) 339-358.
[148] B. Shriky, A. Kelly, M. Isreb, M. Babenko, N. Mahmoudi, S. Rogers, O. Shebanova, T. Snow, T. Gough, Pluronic F127 thermosensitive injectable smart hydrogels for controlled drug delivery system development, J Colloid Interface Sci 565 (2020) 119-130.
[149] E. Gioffredi, M. Boffito, S. Calzone, S.M. Giannitelli, A. Rainer, M. Trombetta, P. Mozetic, V. Chiono, Pluronic F127 Hydrogel Characterization and Biofabrication in Cellularized Constructs for Tissue Engineering Applications, Procedia CIRP 49 (2016) 125-132.
[150] M.Y. Kozlov, N.S. Melik-Nubarov, E.V. Batrakova, A.V. Kabanov, Relationship between Pluronic Block Copolymer Structure, Critical Micellization Concentration and Partitioning Coefficients of Low Molecular Mass Solutes, Macromolecules 33(9) (2000) 3305-3313.
[151] A.M. Butt, M.C. Mohd Amin, H. Katas, Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs, Int J Nanomedicine 10 (2015) 1321-34.
[152] M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, E. Mendes, P. Dubruel, Cross-linkable, thermo-responsive Pluronic® building blocks for biomedical applications: Synthesis and physico-chemical evaluation, European Polymer Journal 53 (2014) 126-138.
[153] S. Lü, N. Gao, Z. Cao, C. Gao, X. Xu, X. Bai, C. Feng, M. Liu, Pluronic F127–chondroitin sulfate micelles prepared through a facile method for passive and active tumor targeting, RSC Advances 6(54) (2016) 49263-49271.
[154] N. Gjerde, K. Zhu, B. Nystrom, K.D. Knudsen, Effect of PCL end-groups on the self-assembly process of Pluronic in aqueous media, Phys Chem Chem Phys 20(4) (2018) 2585-2596.
[155] L. Mei, Y. Zhang, Y. Zheng, G. Tian, C. Song, D. Yang, H. Chen, H. Sun, Y. Tian, K. Liu, Z. Li, L. Huang, A Novel Docetaxel-Loaded Poly (ε-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment, Nanoscale Res Lett 4(12) (2009) 1530-1539.
[156] K.M. Park, S.Y. Lee, Y.K. Joung, J.S. Na, M.C. Lee, K.D. Park, Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration, Acta Biomater 5(6) (2009) 1956-65.
[157] I.T. Ozbolat, 3 - The Bioink∗∗With contributions by Monika Hospodiuk and Madhuri Dey, The Pennsylvania State University, in: I.T. Ozbolat (Ed.), 3D Bioprinting, Academic Press, Oxford, 2017, pp. 41-92.
[158] <Hydrogel Classification, Properties, Preparation and Technical Features.pdf>.
[159] V. Meka, M. Gill, M. Pichika, S. Nali, V. Kolapalli, P. Kesharwani, A comprehensive review on polyelectrolyte complexes, Drug Discovery Today 22 (2017).
[160] S.K. H. Gulrez, S. Al-Assaf, G. O, Hydrogels: Methods of Preparation, Characterisation and Applications, (2011).
[161] S. Lankalapalli, V.R.M. Kolapalli, Polyelectrolyte Complexes: A Review of their Applicability in Drug Delivery Technology, Indian J Pharm Sci 71(5) (2009) 481-487.
[162] J.Y. Seo, B. Lee, T.W. Kang, J.H. Noh, M.J. Kim, Y.B. Ji, H.J. Ju, B.H. Min, M.S. Kim, Electrostatically Interactive Injectable Hydrogels for Drug Delivery, Tissue Eng Regen Med 15(5) (2018) 513-520.
[163] J. Zhao, T. Xing, Q. Li, Y. Chen, W. Yao, S. Jin, S. Chen, Preparation of chitosan and carboxymethylcellulose‐based polyelectrolyte complex hydrogel via SD‐A‐SGT method and its adsorption of anionic and cationic dye, Journal of Applied Polymer Science 137(34) (2020) 48980.
[164] S. Vasiliu, S. Racovita, M. Popa, L. Ochiuz, C.A. Peptu, Chitosan-Based Polyelectrolyte Complex Hydrogels for Biomedical Applications, in: M.I.H. Mondal (Ed.), Cellulose-Based Superabsorbent Hydrogels, Springer International Publishing, Cham, 2019, pp. 1695-1725.
[165] A.V. Briones, T. Sato, Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan–carrageenan, Reactive and Functional Polymers 70(1) (2010) 19-27.
[166] C.T. Tsao, C.H. Chang, Y.Y. Lin, M.F. Wu, J.L. Wang, T.H. Young, J.L. Han, K.H. Hsieh, Evaluation of chitosan/γ-poly(glutamic acid) polyelectrolyte complex for wound dressing materials, Carbohydrate Polymers 84(2) (2011) 812-819.
[167] H.-D. Wu, J.-C. Yang, T. Tsai, D.-Y. Ji, W.-J. Chang, C.-C. Chen, S.-Y. Lee, Development of a chitosan–polyglutamate based injectable polyelectrolyte complex scaffold, Carbohydrate Polymers 85(2) (2011) 318-324.
[168] M. Ishihara, S. Kishimoto, S. Nakamura, Y. Sato, H. Hattori, Polyelectrolyte Complexes of Natural Polymers and Their Biomedical Applications, Polymers (Basel) 11(4) (2019).
[169] S. Hein, K. Wang, W.F. Stevens, J. Kjems, Chitosan composites for biomedical applications: status, challenges and perspectives, Materials Science and Technology 24(9) (2013) 1053-1061.
[170] Q. Liu, Q. Li, S. Xu, Q. Zheng, X. Cao, Preparation and Properties of 3D Printed Alginate(-)Chitosan Polyion Complex Hydrogels for Tissue Engineering, Polymers (Basel) 10(6) (2018).
[171] Y. Qin, 3 - A brief description of textile fibers, in: Y. Qin (Ed.), Medical Textile Materials, Woodhead Publishing2016, pp. 23-42.
[172] J. Davis, A. McLister, Chapter Four - Passive and Interactive Dressing Materials, in: J. Davis, A. McLister, J. Cundell, D. Finlay (Eds.), Smart Bandage Technologies, Academic Press2016, pp. 93-144.
[173] D. Kulig, A. Zimoch-Korzycka, A. Jarmoluk, K. Marycz, Study on Alginate(-)Chitosan Complex Formed with Different Polymers Ratio, Polymers (Basel) 8(5) (2016).
[174] Z. Jin, A.M. Harvey, S. Mailloux, J. Halámek, V. Bocharova, M.R. Twiss, E. Katz, Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations, Journal of Materials Chemistry 22(37) (2012) 19523.
[175] R.D. Horniblow, M. Dowle, T.H. Iqbal, G.O. Latunde-Dada, R.E. Palmer, Z. Pikramenou, C. Tselepis, Alginate-Iron Speciation and Its Effect on In Vitro Cellular Iron Metabolism, PLoS One 10(9) (2015) e0138240.
[176] A. Bauer, L. Gu, B.J. Kwee, W. Li, M.O. Dellacherie, A. Celiz, D. Mooney, Hydrogel substrate stress-relaxation regulates the spreading and proliferation of mouse myoblasts, Acta biomaterialia 62 (2017) 82-90.
[177] M. George, T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review, Journal of controlled release : official journal of the Controlled Release Society 114(1) (2006) 1-14.
[178] J.L. Drury, R.G. Dennis, D.J. Mooney, The tensile properties of alginate hydrogels, Biomaterials 25(16) (2004) 3187-3199.
[179] Y. Qin, Alginate fibres: an overview of the production processes and applications in wound management, Polymer International 57(2) (2008) 171-180.
[180] <Polysaccharide_Gums_Structures_Functional_Properti.pdf>.
[181] S. Maiti, L. Kumari, 3 - Smart Nanopolysaccharides for the Delivery of Bioactives, in: A.M. Holban, A.M. Grumezescu (Eds.), Nanoarchitectonics for Smart Delivery and Drug Targeting, William Andrew Publishing2016, pp. 67-94.
[182] M.M. Stevens, H.F. Qanadilo, R. Langer, V. Prasad Shastri, A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering, Biomaterials 25(5) (2004) 887-94.
[183] K.Y. Lee, D.J. Mooney, Alginate: properties and biomedical applications, Prog Polym Sci 37(1) (2012) 106-126.
[184] M. Szekalska, A. Puciłowska, E. Szymańska, P. Ciosek, K. Winnicka, Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications, International Journal of Polymer Science 2016 (2016) 7697031.
[185] J. Davis, A. McLister, Passive and Interactive Dressing Materials, (2016) 93-144.
[186] K.I. Draget, G. Skjåk-Bræk, O. Smidsrød, Alginate based new materials, International Journal of Biological Macromolecules 21(1) (1997) 47-55.
[187] S. Maiti, L. Kumari, Smart Nanopolysaccharides for the Delivery of Bioactives, (2016) 67-94.
[188] <Ionically crosslinked alginate hydrogels as sca!olds for tissue.pdf>.
[189] J. Liao, B. Wang, Y. Huang, Y. Qu, J. Peng, Z. Qian, Injectable Alginate Hydrogel Cross-Linked by Calcium Gluconate-Loaded Porous Microspheres for Cartilage Tissue Engineering, ACS Omega 2(2) (2017) 443-454.
[190] K.Y. Lee, H.J. Kong, R.G. Larson, D.J. Mooney, Hydrogel Formation via Cell Crosslinking, Advanced Materials 15(21) (2003) 1828-1832.
[191] F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, Journal of Biological Engineering 14(1) (2020) 8.
[192] H. Zhang, F. Zhang, J. Wu, Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique, Reactive and Functional Polymers 73(7) (2013) 923-928.
[193] J. Wu, H. Zhang, Physically Cross-Linked Hydrogel from Carboxymethylated Curdlan Prepared by Freeze-Thaw Techniques, Gums and Stabilisers for the Food Industry 15, The Royal Society of Chemistry2009, pp. 420-426.
[194] E. Balazs, Sediment volume and viscoelastic behavior of hyaluronic acid solutions, Federation proceedings 25 6 (1966) 1817-22.
[195] P. Giannouli, E. Morris, Cryogelation of xanthan, Food Hydrocolloids 17 (2003) 495-501.
[196] Y. Guan, X.-M. Qi, B. Zhang, G.-G. Chen, F. Peng, R.-C. Sun, Physically Crosslinked Composite Hydrogels of Hemicelluloses with Poly(vinyl alcohol phosphate) and Chitin Nanowhiskers, BioResources 10(1) (2015) 1378-1393.
[197] S.R. Stauffer, N.A. Peppast, Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing, Polymer 33(18) (1992) 3932-3936.
[198] J.L. Holloway, K.L. Spiller, A.M. Lowman, G.R. Palmese, Analysis of the in vitro swelling behavior of poly(vinyl alcohol) hydrogels in osmotic pressure solution for soft tissue replacement, Acta Biomaterialia 7(6) (2011) 2477-2482.
[199] L.E. Millon, W.K. Wan, The polyvinyl alcohol–bacterial cellulose system as a new nanocomposite for biomedical applications, Journal of Biomedical Materials Research Part B: Applied Biomaterials 79B(2) (2006) 245-253.
[200] F. Yokoyama, I. Masada, K. Shimamura, T. Ikawa, K. Monobe, Morphology and structure of highly elastic poly(vinyl alcohol) hydrogel prepared by repeated freezing-and-melting, Colloid and Polymer Science 264(7) (1986) 595-601.
[201] N.A. Peppas, S.R. Stauffer, Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review, Journal of Controlled Release 16(3) (1991) 305-310.
[202] W.K. Wan, G. Campbell, Z.F. Zhang, A.J. Hui, D.R. Boughner, Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent, Journal of Biomedical Materials Research 63(6) (2002) 854-861.
[203] V. Pazos, R. Mongrain, J.C. Tardif, Polyvinyl alcohol cryogel: optimizing the parameters of cryogenic treatment using hyperelastic models, Journal of the mechanical behavior of biomedical materials 2(5) (2009) 542-9.
[204] W. Meng, Y. Huang, Y. Fu, Z. Wang, C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets, Journal of Materials Chemistry C 2(47) (2014) 10049-10061.
[205] M.J.D. Nugent, A. Hanley, P.T. Tomkins, C.L. Higginbotham, Investigation of a novel freeze-thaw process for the production of drug delivery hydrogels, Journal of Materials Science: Materials in Medicine 16(12) (2005) 1149-1158.
[206] S.M. Shaheen, K. Yamaura, Preparation of theophylline hydrogels of atactic poly(vinyl alcohol)/NaCl/H2O system for drug delivery system, Journal of Controlled Release 81(3) (2002) 367-377.
[207] T. Hatakeyama, A. Yamauchi, H. Hatakeyama, Effect of thermal hysteresis on structural change of water restrained in poly(vinyl alcohol) pseudo-gel, European Polymer Journal 23(5) (1987) 361-365.
[208] T.H. Kim, D.B. An, S.H. Oh, M.K. Kang, H.H. Song, J.H. Lee, Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing-thawing method to investigate stem cell differentiation behaviors, Biomaterials 40 (2015) 51-60.
[209] W. Wan, A.D. Bannerman, L. Yang, H. Mak, Poly(Vinyl Alcohol) Cryogels for Biomedical Applications, in: O. Okay (Ed.), Polymeric Cryogels: Macroporous Gels with Remarkable Properties, Springer International Publishing, Cham, 2014, pp. 283-321.
[210] J.K. Li, N. Wang, X.S. Wu, Poly(vinyl alcohol) nanoparticles prepared by freezing–thawing process for protein / peptide drug delivery, Journal of Controlled Release 56 (1998) 117–126.
[211] A.K. Gaharwar, N.A. Peppas, A. Khademhosseini, Nanocomposite hydrogels for biomedical applications, Biotechnology and Bioengineering 111(3) (2014) 441-453.
[212] V.C.F. Mosqueira, E.A. Leite, C.M. Barros, J.M.C. Vilela, M.S. Andrade, Polymeric Nanostructures for Drug Delivery: Characterization by Atomic Force Microscopy, Microscopy and Microanalysis 11(S03) (2005) 36-39.
[213] P. Yin, Hydrogel-based Nanocomposites and Laserassisted Surface Modification for Biomedical Application, Chemical and Biochemical Engineering, The University of Western Ontario, 2012.
[214] B. Smitha, D.A. Devi, S. Sridhar, Proton-conducting composite membranes of chitosan and sulfonated polysulfone for fuel cell application, International Journal of Hydrogen Energy 33(15) (2008) 4138-4146.
[215] F. Wahid, X.-J. Zhao, S.-R. Jia, H. Bai, C. Zhong, Nanocomposite hydrogels as multifunctional systems for biomedical applications: Current state and perspectives, Composites Part B: Engineering 200 (2020) 108208.
[216] Z. Cong, Y. Shi, Y. Wang, Y. Wang, J. Niu, N. Chen, H. Xue, A novel controlled drug delivery system based on alginate hydrogel/chitosan micelle composites, Int J Biol Macromol 107(Pt A) (2018) 855-864.
[217] T.S. Anirudhan, J. Parvathy, A.S. Nair, A novel composite matrix based on polymeric micelle and hydrogel as a drug carrier for the controlled release of dual drugs, Carbohydr Polym 136 (2016) 1118-27.
[218] M. Sadat-Shojai, M.T. Khorasani, A. Jamshidi, 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications, Mater Sci Eng C Mater Biol Appl 49 (2015) 835-843.
[219] A. Hoppe, N.S. Guldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials 32(11) (2011) 2757-74.
[220] F. Xiao, S. Naficy, G. Casillas, M.H. Khan, T. Katkus, L. Jiang, H. Liu, H. Li, Z. Huang, Edge-Hydroxylated Boron Nitride Nanosheets as an Effective Additive to Improve the Thermal Response of Hydrogels, Advanced Materials 27(44) (2015) 7196-7203.
[221] Z.-Q. Duan, M. Zhong, F.-K. Shi, X.-M. Xie, Transparent h- BN/polyacrylamide nanocomposite hydrogels with enhanced mechanical properties, Chinese Chemical Letters 27(9) (2016) 1490-1494.
[222] Z. Sun, H. Chang, Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology, ACS Nano 8(5) (2014) 4133-4156.
[223] M. Zhao, Y. Huang, Y. Peng, Z. Huang, Q. Ma, H. Zhang, Two-dimensional metal-organic framework nanosheets: synthesis and applications, Chem Soc Rev 47(16) (2018) 6267-6295.
[224] L. Fu, Z. Yan, Q. Zhao, H. Yang, Novel 2D Nanosheets with Potential Applications in Heavy Metal Purification: A Review, Adv. Mater. Interfaces (2018) 1801094.
[225] H. Jin, C. Guo, X. Liu, J. Liu, A. Vasileff, Y. Jiao, Y. Zheng, S.Z. Qiao, Emerging Two-Dimensional Nanomaterials for Electrocatalysis, Chem Rev 118(13) (2018) 6337-6408.
[226] C. Murugan, V. Sharma, R.K. Murugan, G. Malaimegu, A. Sundaramurthy, Two-dimensional cancer theranostic nanomaterials: Synthesis, surface functionalization and applications in photothermal therapy, Journal of controlled release : official journal of the Controlled Release Society 299 (2019) 1-20.
[227] L. Wang, Q. Xiong, F. Xiao, H. Duan, 2D nanomaterials based electrochemical biosensors for cancer diagnosis, Biosensors and Bioelectronics 89 (2017) 136-151.
[228] R. Kurapati, K. Kostarelos, M. Prato, A. Bianco, Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead, Advanced materials (Deerfield Beach, Fla.) 28(29) (2016) 6052-74.
[229] S. Kim, Y. Yoo, H. Kim, E. Lee, J.Y. Lee, Reduction of graphene oxide/alginate composite hydrogels for enhanced adsorption of hydrophobic compounds, Nanotechnology 26(40) (2015) 405602.
[230] N. Mac Kenna, P. Calvert, A. Morrin, G.G. Wallace, S.E. Moulton, Electro-stimulated release from a reduced graphene oxide composite hydrogel, Journal of Materials Chemistry B 3(12) (2015) 2530-2537.
[231] K. Khan, A.K. Tareen, M. Aslam, R. Wang, Y. Zhang, A. Mahmood, Z. Ouyang, H. Zhang, Z. Guo, Recent developments in emerging two-dimensional materials and their applications, Journal of Materials Chemistry C 8(2) (2020) 387-440.
[232] J.N. Coleman, M. Lotya, A. O'Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science (New York, N.Y.) 331(6017) (2011) 568-71.
[233] T. Kameda, T. Yoshioka, F. Yabuuchi, M. Uchida, A. Okuwaki, Effects of pH and concentration on ability of Cl− and NO3−to intercalate into a hydrotalcite-like compound during its synthesis, Bulletin of Materials Science 31(4) (2008) 625-629.
[234] Y. Lin, T.V. Williams, J.W. Connell, Soluble, Exfoliated Hexagonal Boron Nitride Nanosheets, The Journal of Physical Chemistry Letters 1(1) (2009) 277-283.
[235] P. Thangasamy, M. Sathish, Supercritical fluid processing: a rapid, one-pot exfoliation process for the production of surfactant-free hexagonal boron nitride nanosheets, CrystEngComm 17(31) (2015) 5895-5899.
[236] G.R. Bhimanapati, N.R. Glavin, J.A. Robinson, 2D Boron Nitride, 95 (2016) 101-147.
[237] Y.G. Zhou, J. Xiao-Dong, Z.G. Wang, H.Y. Xiao, F. Gao, X.T. Zu, Electronic and magnetic properties of metal-doped BN sheet: A first-principles study, Phys Chem Chem Phys 12(27) (2010) 7588-92.
[238] J. Wang, D. Zhao, X. Zou, L. Mao, L. Shi, The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity, Journal of Materials Science: Materials in Electronics 28(17) (2017) 12984-12994.
[239] J. Wang, Y. Wu, Y. Xue, D. Liu, X. Wang, X. Hu, Y. Bando, W. Lei, Super-compatible functional boron nitride nanosheets/polymer films with excellent mechanical properties and ultra-high thermal conductivity for thermal management, Journal of Materials Chemistry C 6(6) (2018) 1363-1369.
[240] F. Jiang, S. Cui, N. Song, L. Shi, P. Ding, Hydrogen Bond-Regulated Boron Nitride Network Structures for Improved Thermal Conductive Property of Polyamide-imide Composites, ACS applied materials & interfaces 10(19) (2018) 16812-16821.
[241] S. Kumari, O.P. Sharma, R. Gusain, H.P. Mungse, A. Kukrety, N. Kumar, H. Sugimura, O.P. Khatri, Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction, ACS Appl Mater Interfaces 7(6) (2015) 3708-16.
[242] Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications, Chem Soc Rev 45(14) (2016) 3989-4012.
[243] K. Zhang, Y. Feng, F. Wang, Z. Yang, J. Wang, Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications, Journal of Materials Chemistry C 5(46) (2017) 11992-12022.
[244] X.-f. Wu, Z.-h. Zhao, Y. Sun, H. Li, C.-x. Zhang, Y.-j. Wang, S.-s. Zheng, H. Zhang, Few-layer boron nitride nanosheets: Preparation, characterization and application in epoxy resin, Ceramics International 43(2) (2017) 2274-2278.
[245] H. Kobayashi, A. Fukuoka, Hexagonal Boron Nitride for Adsorption of Saccharides, The Journal of Physical Chemistry C 121(32) (2017) 17332-17338.
[246] Y. Chen, X. Gao, J. Wang, W. He, V.V. Silberschmidt, S. Wang, Z. Tao, H. Xu, Properties and application of polyimide-based composites by blending surface functionalized boron nitride nanoplates, Journal of Applied Polymer Science 132(16) (2015) n/a-n/a.
[247] T. Sainsbury, A. O’Neill, M.K. Passarelli, M. Seraffon, D. Gohil, S. Gnaniah, S.J. Spencer, A. Rae, J.N. Coleman, Dibromocarbene Functionalization of Boron Nitride Nanosheets: Toward Band Gap Manipulation and Nanocomposite Applications, Chemistry of Materials 26(24) (2014) 7039-7050.
[248] F. Lu, F. Wang, W. Gao, X. Huang, X. Zhang, Y. Li, Aqueous soluble boron nitride nanosheets via anionic compound-assisted exfoliation, Materials Express 3(2) (2013) 144-150.
[249] S. Kumari, O.P. Sharma, O.P. Khatri, Alkylamine-functionalized hexagonal boron nitride nanoplatelets as a novel material for the reduction of friction and wear, Phys Chem Chem Phys 18(33) (2016) 22879-88.
[250] L. Jing, H. Li, R.Y. Tay, B. Sun, S.H. Tsang, O. Cometto, J. Lin, E.H.T. Teo, A.I.Y. Tok, Biocompatible Hydroxylated Boron Nitride Nanosheets/Poly(vinyl alcohol) Interpenetrating Hydrogels with Enhanced Mechanical and Thermal Responses, ACS Nano 11(4) (2017) 3742-3751.
[251] S.J. Buwalda, Bio-based composite hydrogels for biomedical applications, Multifunctional Materials 3(2) (2020) 022001.
[252] R. Rodríguez-Rodríguez, H. Espinosa-Andrews, C. Velasquillo-Martínez, Z.Y. García-Carvajal, Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review, International Journal of Polymeric Materials and Polymeric Biomaterials 69(1) (2019) 1-20.
[253] C. Sheffield, K. Meyers, E. Johnson, R.M. Rajachar, Application of Composite Hydrogels to Control Physical Properties in Tissue Engineering and Regenerative Medicine, Gels (Basel, Switzerland) 4(2) (2018) 51.
[254] C. Tsitsilianis, Responsive reversible hydrogels from associative “smart” macromolecules, Soft Matter 6(11) (2010) 2372.
[255] H. Cui, X. Zhuang, C. He, Y. Wei, X. Chen, High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications, Acta Biomaterialia 11 (2015) 183-190.
[256] H. Cui, X. Zhuang, C. He, Y. Wei, X. Chen, High performance and reversible ionic polypeptide hydrogel based on charge-driven assembly for biomedical applications, Acta Biomater 11 (2015) 183-90.
[257] A.P. Vogt, B.S. Sumerlin, Temperature and redox responsive hydrogels from ABA triblock copolymers prepared by RAFT polymerization, Soft Matter 5(12) (2009) 2347-2351.
[258] B.L. Ekerdt, C.M. Fuentes, Y. Lei, M.M. Adil, A. Ramasubramanian, R.A. Segalman, D.V. Schaffer, Thermoreversible Hyaluronic Acid-PNIPAAm Hydrogel Systems for 3D Stem Cell Culture, Advanced healthcare materials 7(12) (2018) e1800225.
[259] Y. Xue, D. Liu, C. Wang, C. Bao, X. Wang, H. Zhu, H. Mao, Z. Cai, Q. Lin, L. Zhu, Photo and Reduction Dual-Responsive Hydrogel for Regulating Cell Adhesion and Cell Sheet Harvest, ACS Applied Bio Materials 3(4) (2020) 2410-2418.
[260] B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, S.R. White, Self-Healing Polymers and Composites, Annual Review of Materials Research 40(1) (2010) 179-211.
[261] N. Samadi, M. Sabzi, M. Babaahmadi, Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene, International Journal of Biological Macromolecules 107 (2018) 2291-2297.
[262] M. Gong, L. Zhang, Y. Zuo, Q. Zou, Y. Wang, L. Wang, Y. Li, Investigation on the interpenetrating polymer networks (ipns) of polyvinyl alcohol and poly(N-vinyl pyrrolidone) hydrogel and its in vitro bioassessment, Journal of Applied Polymer Science 125(4) (2012) 2799-2806.
[263] G. Du, L. Nie, G. Gao, Y. Sun, R. Hou, H. Zhang, T. Chen, J. Fu, Tough and biocompatible hydrogels based on in situ interpenetrating networks of dithiol-connected graphene oxide and poly(vinyl alcohol), ACS Appl Mater Interfaces 7(5) (2015) 3003-8.
[264] Q. Chen, L. Zhu, H. Chen, H. Yan, L. Huang, J. Yang, J. Zheng, A Novel Design Strategy for Fully Physically Linked Double Network Hydrogels with Tough, Fatigue Resistant, and Self-Healing Properties, Advanced Functional Materials 25(10) (2015) 1598-1607.
[265] W. Li, H. An, Y. Tan, C. Lu, C. Liu, P. Li, K. Xu, P. Wang, Hydrophobically associated hydrogels based on acrylamide and anionic surface active monomer with high mechanical strength, Soft Matter 8(18) (2012) 5078.
[266] Z. Hu, G. Chen, Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content, Adv Mater 26(34) (2014) 5950-6.
[267] H. Jiang, Z. Wang, H. Geng, X. Song, H. Zeng, C. Zhi, Highly Flexible and Self-Healable Thermal Interface Material Based on Boron Nitride Nanosheets and a Dual Cross-Linked Hydrogel, ACS Appl Mater Interfaces 9(11) (2017) 10078-10084.
[268] H.-P. Cong, P. Wang, S.-H. Yu, Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design, Chemistry of Materials 25(16) (2013) 3357-3362.
[269] G. Li, H. Zhang, D. Fortin, H. Xia, Y. Zhao, Poly(vinyl alcohol)-Poly(ethylene glycol) Double-Network Hydrogel: A General Approach to Shape Memory and Self-Healing Functionalities, Langmuir 31(42) (2015) 11709-16.
[270] H. Zhang, H. Xia, Y. Zhao, Poly(vinyl alcohol) Hydrogel Can Autonomously Self-Heal, ACS Macro Letters 1(11) (2012) 1233-1236.
[271] M. Chen, G. Gong, L. Zhou, F. Zhang, Facile fabrication of a magnetic self-healing poly(vinyl alcohol) composite hydrogel, RSC Advances 7(35) (2017) 21476-21483.
[272] X. Tong, L. Du, Q. Xu, Tough, adhesive and self-healing conductive 3D network hydrogel of physically linked functionalized-boron nitride/clay /poly(N-isopropylacrylamide), Journal of Materials Chemistry A 6(7) (2018) 3091-3099.
[273] Y. Chen, W. Cheng, L. Teng, M. Jin, B. Lu, L. Ren, Y. Wang, Graphene Oxide Hybrid Supramolecular Hydrogels with Self-Healable, Bioadhesive and Stimuli-Responsive Properties and Drug Delivery Application, Macromolecular Materials and Engineering 303(8) (2018) 1700660.
[274] J.M. Reinke, H. Sorg, Wound repair and regeneration, Eur Surg Res 49(1) (2012) 35-43.
[275] A.C.d.O. Gonzalez, T.F. Costa, Z.d.A. Andrade, A.R.A.P. Medrado, Wound healing - A literature review, An Bras Dermatol 91(5) (2016) 614-620.
[276] S. Nour, N. Baheiraei, R. Imani, M. Khodaei, A. Alizadeh, N. Rabiee, S.M. Moazzeni, A review of accelerated wound healing approaches: biomaterial- assisted tissue remodeling, Journal of Materials Science: Materials in Medicine 30(10) (2019) 120.
[277] M. Visha, M. Karunagaran, A review on wound healing, International Journal of Clinicopathological Correlation 3(2) (2019) 50-59.
[278] N.B. Menke, K.R. Ward, T.M. Witten, D.G. Bonchev, R.F. Diegelmann, Impaired wound healing, Clin Dermatol 25(1) (2007) 19-25.
[279] W. Yu, Y.-Y. Jiang, T.-W. Sun, C. Qi, H. Zhao, F. Chen, Z. Shi, Y.-J. Zhu, D. Chen, Y. He, Design of a novel wound dressing consisting of alginate hydrogel and simvastatin-incorporated mesoporous hydroxyapatite microspheres for cutaneous wound healing, RSC Advances 6(106) (2016) 104375-104387.
[280] K. Wang, Y. Hao, Y. Wang, J. Chen, L. Mao, Y. Deng, J. Chen, S. Yuan, T. Zhang, J. Ren, W. Liao, Functional Hydrogels and Their Application in Drug Delivery, Biosensors, and Tissue Engineering, International Journal of Polymer Science 2019 (2019) 3160732.
[281] M.H. Periayah, A.S. Halim, A.Z. Mat Saad, Mechanism Action of Platelets and Crucial Blood Coagulation Pathways in Hemostasis, Int J Hematol Oncol Stem Cell Res 11(4) (2017) 319-327.
[282] O. Catanzano, V. D’Esposito, S. Acierno, M.R. Ambrosio, C. De Caro, C. Avagliano, P. Russo, R. Russo, A. Miro, F. Ungaro, A. Calignano, P. Formisano, F. Quaglia, Alginate–hyaluronan composite hydrogels accelerate wound healing process, Carbohydrate Polymers 131 (2015) 407-414.
[283] X. Tang, X. Gu, Y. Wang, X. Chen, J. Ling, Y. Yang, Stable antibacterial polysaccharide-based hydrogels as tissue adhesives for wound healing, RSC Advances 10(29) (2020) 17280-17287.
[284] A. Chhatri, J. Bajpai, A.K. Bajpai, Designing polysaccharide-based antibacterial biomaterials for wound healing applications, Biomatter 1(2) (2011) 189-97.
[285] A.T. Andrgie, H.F. Darge, T.W. Mekonnen, Y.S. Birhan, E.Y. Hanurry, H.Y. Chou, C.F. Wang, H.C. Tsai, J.M. Yang, Y.H. Chang, Ibuprofen-Loaded Heparin Modified Thermosensitive Hydrogel for Inhibiting Excessive Inflammation and Promoting Wound Healing, Polymers (Basel) 12(11) (2020).
[286] E. Osti, F. Osti, TREATMENT OF CUTANEOUS BURNS WITH BURNSHIELD (HYDROGEL) AND A SEMI-PERMEABLE ADHESIVE FILM, 2004.
[287] G.D. Winter, Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig, Nature 193(4812) (1962) 293-294.
[288] G. B.M, D.S. Y.M, A. Hiremath, G. M.C, J. P.K, Self Healing Materials: A New Era in Material Technology: A Review, Applied Engineering Research 11 (2016) 1373-1378.
[289] L. Zhang, M. Tian, J. Wu, Hydrogels with Self-Healing Attribute, (2016).
[290] A. Phadke, C. Zhang, B. Arman, C.C. Hsu, R.A. Mashelkar, A.K. Lele, M.J. Tauber, G. Arya, S. Varghese, Rapid self-healing hydrogels, Proc Natl Acad Sci U S A 109(12) (2012) 4383-8.
[291] Y. Zhang, L. Tao, S. Li, Y. Wei, Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules, Biomacromolecules 12(8) (2011) 2894-901.
[292] L. Yang, Y. Li, Y. Gou, X. Wang, X. Zhao, L. Tao, Improving tumor chemotherapy effect using an injectable self-healing hydrogel as drug carrier, Polymer Chemistry 8(34) (2017) 5071-5076.
[293] R. Chen, X. Xu, D. Yu, M. Liu, C. Xiao, I. Wyman, Z. Wang, H. Yang, X. Wu, Temperature-regulated flexibility of polymer chains in rapidly self-healing hydrogels, NPG Asia Materials 11(1) (2019).
[294] H.P. Cong, P. Wang, S.H. Yu, Highly elastic and superstretchable graphene oxide/polyacrylamide hydrogels, Small 10(3) (2014) 448-53.
[295] J. Cui, A. del Campo, Multivalent H-bonds for self-healing hydrogels, Chem Commun (Camb) 48(74) (2012) 9302-4.
[296] U. Gulyuz, O. Okay, Self-healing polyacrylic acid hydrogels, Soft Matter 9(43) (2013) 10287.
[297] G. Jiang, C. Liu, X. Liu, G. Zhang, M. Yang, Q. Chen, F. Liu, Self-healing Mechanism and Mechanical Behavior of Hydrophobic Association Hydrogels with High Mechanical Strength, Journal of Macromolecular Science, Part A 47(4) (2010) 335-342.
[298] W.S. Lyoo, D.S. Shin, S.S. Han, S.K. Noh, H.G. Choi, C.S. Yong, J.A. Kim, J.-R. Kim, J.H. Kim, Release Behaviour of Bovine Serum Albumin in Syndiotactic Poly(vinyl alcohol) Hydrogel, Prepared by Freezing-Thawing, Polymers & Polymer Composites 14 (2006) 39-46.
[299] Y. Huang, M. Zhang, W. Ruan, High-water-content graphene oxide/polyvinyl alcohol hydrogel with excellent mechanical properties, J. Mater. Chem. A 2(27) (2014) 10508-10515.
[300] W. Wan, A.D. Bannerman, L. Yang, H. Mak, Poly(Vinyl Alcohol) Cryogels for Biomedical Applications, 263 (2014) 283-321.
[301] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2004.
[302] S. Das, U. Subuddhi, Controlled delivery of ibuprofen from poly(vinyl alcohol)-poly(ethylene glycol) interpenetrating polymeric network hydrogels, J Pharm Anal 9(2) (2019) 108-116.
[303] X. Qi, X. Yao, S. Deng, T. Zhou, Q. Fu, Water-induced shape memory effect of graphene oxide reinforced polyvinyl alcohol nanocomposites, J. Mater. Chem. A 2(7) (2014) 2240-2249.
[304] N. Samadi, M. Sabzi, M. Babaahmadi, Self-healing and tough hydrogels with physically cross-linked triple networks based on Agar/PVA/Graphene, Int J Biol Macromol 107(Pt B) (2018) 2291-2297.
[305] U. Gulyuz, O. Okay, Self-Healing Poly(acrylic acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength, Macromolecules 47 (2014) 6889−6899.
[306] M. Sabzi, N. Samadi, F. Abbasi, G.R. Mahdavinia, M. Babaahmadi, Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure, Mater Sci Eng C Mater Biol Appl 74 (2017) 374-381.
[307] G. Li, Q. Yan, H. Xia, Y. Zhao, Therapeutic-Ultrasound-Triggered Shape Memory of a Melamine-Enhanced Poly(vinyl alcohol) Physical Hydrogel, ACS Appl Mater Interfaces 7(22) (2015) 12067-73.
[308] C.M. Paranhosa, R.N. Oliveiraa, B.G. Soaresa, L.A.P. a, Poly(vinyl alcohol)/sulfonated Polyester Hydrogels Produced by Freezing and Thawing Technique: Preparation and Characterization, Materials Research 10 (2007) 43-46.
[309] R.C. Zhang, D. Sun, A. Lu, S. Askari, M. Macias-Montero, P. Joseph, D. Dixon, K. Ostrikov, P. Maguire, D. Mariotti, Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance, ACS Appl Mater Interfaces 8(21) (2016) 13567-72.
[310] W. Meng, Y. Huang, Y. Fu, Z. Wang, C. Zhi, Polymer composites of boron nitride nanotubes and nanosheets, J. Mater. Chem. C 2(47) (2014) 10049-10061.
[311] S. Guo, J. Zhu, X. Li, B. Wei, Thin h-BN nanosheets synthesized using probe ultrasonication for dual functional applications, Veruscript Functional Nanomaterials 1 (2017) ON7EWL.
[312] S. Xue, Y. Wu, M. Guo, D. Liu, T. Zhang, W. Lei, Fabrication of Poly(acrylic acid)/Boron Nitride Composite Hydrogels with Excellent Mechanical Properties and Rapid Self-Healing Through Hierarchically Physical Interactions, Nanoscale Res Lett 13(1) (2018) 393.
[313] N. Yang, C. Xu, J. Hou, Y. Yao, Q. Zhang, M.E. Grami, L. He, N. Wang, X. Qu, Preparation and properties of thermally conductive polyimide/boron nitride composites, RSC Advances 6(22) (2016) 18279-18287.
[314] C.-G. Yin, Y. Ma, Z.-J. Liu, J.-C. Fan, P.-H. Shi, Q.-J. Xu, Y.-L. Min, Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes, Polymer 162 (2019) 100-107.
[315] W. Cai, D. Zhang, B. Wang, Y. Shi, Y. Pan, J. Wang, W. Hu, Y. Hu, Scalable one-step synthesis of hydroxylated boron nitride nanosheets for obtaining multifunctional polyvinyl alcohol nanocomposite films: Multi-azimuth properties improvement, Composites Science and Technology 168 (2018) 74-80.
[316] J. Thompson, A. Crossley, P.D. Nellist, V. Nicolosi, Single-step exfoliation and chemical functionalisation of graphene and hBN nanosheets with nickel phthalocyanine, Journal of Materials Chemistry 22(43) (2012) 23246.
[317] S. Mateti, C.S. Wong, Z. Liu, W. Yang, Y. Li, L.H. Li, Y. Chen, Biocompatibility of boron nitride nanosheets, Nano Research 11(1) (2017) 334-342.
[318] Y. Lin, J.W. Connell, Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene, Nanoscale 4(22) (2012) 6908-39.
[319] Q. Cai, D. Scullion, A. Falin, K. Watanabe, T. Taniguchi, Y. Chen, E.J. Santos, L.H. Li, Raman signature and phonon dispersion of atomically thin boron nitride, Nanoscale 9(9) (2017) 3059-3067.
[320] I.P. Oliveri, G. Maccarrone, S. Di Bella, A Lewis basicity scale in dichloromethane for amines and common nonprotogenic solvents using a zinc(II) Schiff-base complex as reference Lewis acid, J Org Chem 76(21) (2011) 8879-84.
[321] R.J. Fong, A. Robertson, P.E. Mallon, R.L. Thompson, The Impact of Plasticizer and Degree of Hydrolysis on Free Volume of Poly(vinyl alcohol) Films, Polymers (Basel) 10(9) (2018).
[322] R. Ricciardi, F. Auriemma, C.D. Rosa, F.o. Laupreˆtre, X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques, Macromolecules 37 (2004) 1921-1927.
[323] E.-R. Kenawy, E.A. Kamoun, M.S. Mohy Eldin, M.A. El-Meligy, Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications, Arabian Journal of Chemistry 7(3) (2014) 372-380.
[324] R. Nagarkar, J. Patel, Polyvinyl Alcohol: A Comprehensive Study, Acta Scientific Pharmaceutical Sciences 3(4) (2019) 34-44

[325] H. Liu, G. Zhang, H. Li, Preparation and properties of GO-PVA composite hydrogel with oriented structure, 1808 (2017) 030009.
[326] M. Aslam, M.A. Kalyar, Z.A. Raza, Graphene oxides nanosheets mediation of poly(vinyl alcohol) films in tuning their structural and opto-mechanical attributes, Journal of Materials Science: Materials in Electronics 28(18) (2017) 13401-13413.
[327] K. Zhou, S. Jiang, C. Bao, L. Song, B. Wang, G. Tang, Y. Hu, Z. Gui, Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties, RSC Advances 2(31) (2012) 11695.
[328] B. Gupta, R. Agarwal, M. Sarwar Alam, Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes, Journal of Applied Polymer Science 127(2) (2013) 1301-1308.
[329] I. Korbag, S. Mohamed Saleh, Studies on the formation of intermolecular interactions and structural characterization of polyvinyl alcohol/lignin film, International Journal of Environmental Studies 73(2) (2016) 226-235.
[330] H.S. Mansur, R.L. Oréfice, A.A.P. Mansur, Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy, Polymer 45(21) (2004) 7193-7202.
[331] W. Xu, S. Asai, M. Sumitaita, Spectroscopic Study of Ethylene Vinyl Alcohol Copolymer and Poly (vinyl alcohol), FIBER 53(5) (1997) 174-182
[332] I. Supa'at, Polymeric composites--Biodegradation; Polymeric composites--Thermal properties; Polymeric, Malaya, 2012.
[333] J. Yu, H. Mo, P. Jiang, Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength, Polymers for Advanced Technologies 26(5) (2015) 514-520.
[334] E. Părpăriţă, C.N. Cheaburu, S.F. Pațachia, C. Vasile, Polyvinyl alcohol/chitosan/montmorillonite nanocomposites preparation by freeze/thaw cycles and characterization, Acta Chemica Iasi 22(2) (2014) 75-96.
[335] C.-C. Yang, S.-J. Chiu, W.-C. Chien, S.-S. Chiu, Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells, Journal of Power Sources 195(8) (2010) 2212-2219.
[336] S.-D. Jiang, G. Tang, Z.-M. Bai, Y.-Y. Wang, Y. Hu, L. Song, Surface functionalization of MoS2with POSS for enhancing thermal, flame-retardant and mechanical properties in PVA composites, RSC Adv. 4(7) (2014) 3253-3262.
[337] B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials Science: An Introduction to Materials in Medicine, 2012.
[338] M.A. Haque, T. Kurokawa, J.P. Gong, Super tough double network hydrogels and their application as biomaterials, Polymer 53(9) (2012) 1805-1822.
[339] J.K. Li, N. Wang, X.S. Wu, Poly(vinyl alcohol) nanoparticles prepared by freezing–thawing process for protein / peptide drug delivery, Controlled Release 56 (1998) 117-126.
[340] F. Urushizaki, H. Yamaguchi, K. Nakamura, S. Numajiri, K. Sugibayashi, Y. Morimoto, Swelling and mechanical properties of poly( vinyl alcohol) hydrogels, International Journal of Pharmaceutics 58 (1990) 135-142.
[341] F. Li, H. Xia, Dopamine-functionalized poly(vinyl alcohol) elastomer with melt processability and self-healing properties, Journal of Applied Polymer Science 134(28) (2017) 45072.
[342] Z. Zhang, T. Li, B. Chen, S. Wang, Z. Guo, Self-healing supramolecular hydrogel of poly(vinyl alcohol)/chitosan carbon dots, Journal of Materials Science 52(17) (2017) 10614-10623.
[343] M.B. Dreifke, A.A. Jayasuriya, A.C. Jayasuriya, Current wound healing procedures and potential care, Mater Sci Eng C Mater Biol Appl 48 (2015) 651-62.
[344] C.L. Liu, J.C. Tam, A.J. Sanders, C.H. Ko, K.P. Fung, P.C. Leung, K.G. Harding, W.G. Jiang, C.B. Lau, Molecular angiogenic events of a two-herb wound healing formula involving MAPK and Akt signaling pathways in human vascular endothelial cells, Wound Repair Regen 21(4) (2013) 579-87.
[345] X. Li, Y. Jiang, F. Wang, Z. Fan, H. Wang, C. Tao, Z. Wang, Preparation of polyurethane/polyvinyl alcohol hydrogel and its performance enhancement via compositing with silver particles, RSC Adv. 7(73) (2017) 46480-46485.
[346] K.W. Lee, J.J. Yoon, J.H. Lee, S.Y. Kim, H.J. Jung, S.J. Kim, J.W. Joh, H.H. Lee, D.S. Lee, S.K. Lee, Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan, Transplant Proc 36(8) (2004) 2464-5.
[347] S.M. Bauer, R.J. Bauer, O.C. Velazquez, Angiogenesis, vasculogenesis, and induction of healing in chronic wounds, Vasc Endovascular Surg 39(4) (2005) 293-306.
[348] M. Galeano, B. Deodato, D. Altavilla, D. Cucinotta, N. Arsic, H. Marini, V. Torre, M. Giacca, F. Squadrito, Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse, Diabetologia 46(4) (2003) 546-55.
[349] L.H. Li, Y. Chen, Atomically Thin Boron Nitride: Unique Properties and Applications, Advanced Functional Materials 26(16) (2016) 2594-2608.
[350] T.W. Lau, F.F. Lam, K.M. Lau, Y.W. Chan, K.M. Lee, D.S. Sahota, Y.Y. Ho, K.P. Fung, P.C. Leung, C.B. Lau, Pharmacological investigation on the wound healing effects of Radix Rehmanniae in an animal model of diabetic foot ulcer, J Ethnopharmacol 123(1) (2009) 155-62.
[351] R. Hlushchuk, M. Ehrbar, P. Reichmuth, N. Heinimann, B. Styp-Rekowska, R. Escher, O. Baum, P. Lienemann, A. Makanya, E. Keshet, V. Djonov, Decrease in VEGF expression induces intussusceptive vascular pruning, Arterioscler Thromb Vasc Biol 31(12) (2011) 2836-44.
[352] R.A. Largo, V.M. Ramakrishnan, J.S. Marschall, A. Ziogas, A. Banfi, D. Eberli, M. Ehrbar, Long-term biostability and bioactivity of “fibrin linked” VEGF121in vitro and in vivo, Biomaterials Science 2(4) (2014) 581.
[353] E.M. Mahdy, H.A. El-mezayen, E. Eldegheidy, A.M. Alsharabasy, Assessment of the healing activity of polyelectrolyte complexes through molecular and histological characterization, Biomedical Physics & Engineering Express 2(6) (2016) 065010.
[354] H.C. Korting, C. Schollmann, R.J. White, Management of minor acute cutaneous wounds: importance of wound healing in a moist environment, J Eur Acad Dermatol Venereol 25(2) (2011) 130-7.
[355] Y.S. Jung, W. Park, H. Park, D.K. Lee, K. Na, Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery, Carbohydr Polym 156 (2017) 403-408.
[356] Y. Lee, H.J. Chung, S. Yeo, C.-H. Ahn, H. Lee, P.B. Messersmith, T.G. Park, Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction, Soft Matter 6(5) (2010) 977.
[357] S.H. Hsu, Y.L. Leu, J.W. Hu, J.Y. Fang, Physicochemical characterization and drug release of thermosensitive hydrogels composed of a hyaluronic acid/pluronic f127 graft, Chem Pharm Bull (Tokyo) 57(5) (2009) 453-8.
[358] S.I.H. Abdi, J.Y. Choi, J.S. Lee, H.J. Lim, C. Lee, J. Kim, H.Y. Chung, J.O. Lim, In Vivo study of a blended hydrogel composed of pluronic F-127-alginate-hyaluronic acid for its cell injection application, Tissue Engineering and Regenerative Medicine 9(1) (2012) 1-9.
[359] C.C. Chen, C.L. Fang, S.A. Al-Suwayeh, Y.L. Leu, J.Y. Fang, Transdermal delivery of selegiline from alginate-Pluronic composite thermogels, Int J Pharm 415(1-2) (2011) 119-28.
[360] J.Y. Fang, S.H. Hsu, Y.L. Leu, J.W. Hu, Delivery of cisplatin from Pluronic co-polymer systems: liposome inclusion and alginate coupling, J Biomater Sci Polym Ed 20(7-8) (2009) 1031-47.
[361] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Advanced Drug Delivery Reviews 64 (2012) 223-236.
[362] S. Varghese, J.H. Elisseeff, Hydrogels for Musculoskeletal Tissue Engineering, 203 (2006) 95-144.
[363] S. Fu, A. Thacker, D.M. Sperger, R.L. Boni, I.S. Buckner, S. Velankar, E.J. Munson, L.H. Block, Relevance of rheological properties of sodium alginate in solution to calcium alginate gel properties, AAPS PharmSciTech 12(2) (2011) 453-60.
[364] M. Rinaudo, Main properties and current applications of some polysaccharides as biomaterials, Polymer International 57(3) (2008) 397-430.
[365] A.D. Augst, H.J. Kong, D.J. Mooney, Alginate hydrogels as biomaterials, Macromol Biosci 6(8) (2006) 623-33.
[366] B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going, Annu Rev Biomed Eng 6 (2004) 41-75.
[367] H.F. Darge, A.T. Andrgie, E.Y. Hanurry, Y.S. Birhan, T.W. Mekonnen, H.Y. Chou, W.H. Hsu, J.Y. Lai, S.Y. Lin, H.C. Tsai, Localized controlled release of bevacizumab and doxorubicin by thermo-sensitive hydrogel for normalization of tumor vasculature and to enhance the efficacy of chemotherapy, Int J Pharm 572 (2019) 118799.
[368] X. Liu, H. Gan, C. Hu, W. Sun, X. Zhu, Z. Meng, R. Gu, Z. Wu, G. Dou, Silver sulfadiazine nanosuspension-loaded thermosensitive hydrogel as a topical antibacterial agent, Int J Nanomedicine 14 (2019) 289-300.
[369] J.S.C. Breder, A.L.R. Pires, F.F. Azevedo, P.P. Apolinario, T. Cantaruti, S.I. Jiwani, A.M. Moraes, S.R. Consonni, E.P. Araujo, G.G. Adams, M.J.A. Saad, M.H.M. Lima, Enhancement of cellular activity in hyperglycemic mice dermal wounds dressed with chitosan-alginate membranes, Braz J Med Biol Res 53(1) (2020) e8621.
[370] A.V. Kabanov, E.V. Batrakova, V.Y. Alakhov, Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery, Controlled Release 82 (2002) 189-212.
[371] M.S. Hasnain, A.K. Nayak, Alginates: Versatile Polymers in Biomedical Applications and Therapeutics, Apple Academic Pr Inc2019.
[372] P. Barretta, F. Bordi, C. Rinaldi, G. Paradossi, A Dynamic Light Scattering Study of Hydrogels Based on Telechelic Poly(vinyl alcohol), Phys. Chem. B 104 (2000) 11019-11026.
[373] E.B. Jørgensen, S. Hvidt, W. Brown, K. Schille´n, Effects of Salts on the Micellization and Gelation of a Triblock Copolymer Studied by Rheology and Light Scattering, Macromolecules 30 (1997) 2355-2364.
[374] N.K. Pandit, J. Kisaka, Loss of gelation ability of Pluronic ® F127 in the presence of some salts, International Journal of Pharmaceutics 145 (1996) 129-136.
[375] C.S.S.R. Kumar, Raman Spectroscopy for Nanomaterials Characterization, Springer Science & Business Media.
[376] J. Sun, H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications, Materials (Basel) 6(4) (2013) 1285-1309.
[377] W.Y. Leong, C.F. Soon, S.C. Wong, K.S. Tee, S.C. Cheong, S.H. Gan, M. Youseffi, In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique, Bioengineering (Basel) 4(2) (2017).
[378] I.S. Organization., ISO 10993-5. Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity, in: I.S.O. Geneva (Ed.) Switzerland, 2009.
[379] M.T. Pelegrino, B. De Araujo Lima, M.H.M. Do Nascimento, C.B. Lombello, M. Brocchi, A.B. Seabra, Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications, Polymers (Basel) 10(4) (2018).
[380] K.Y. Lee, M.C. Peters, K.W. Anderson, D.J. Mooney, Controlled growth factor release from synthetic extracellular matrices, NATURE 408 (2000).
[381] N. Gokarneshan, Application of natural polymers and herbal extracts in wound management, (2019) 541-561.
[382] T. S., Alginate dressings in surgery and wound management: part 2, Wound Care 9(3) ( 2000 ) 115-9.
[383] A. Tellechea, E.A. Silva, J. Min, E.C. Leal, M.E. Auster, L. Pradhan-Nabzdyk, W. Shih, D.J. Mooney, A. Veves, Alginate and DNA Gels Are Suitable Delivery Systems for Diabetic Wound Healing, Int J Low Extrem Wounds 14(2) (2015) 146-53.
[384] S. Wang, H. Yang, Z. Tang, G. Long, W. Huang, Wound Dressing Model of Human Umbilical Cord Mesenchymal Stem Cells-Alginates Complex Promotes Skin Wound Healing by Paracrine Signaling, Stem Cells Int 2016 (2016) 3269267.
[385] E.K. Akkol, U. Koca, I. Pesin, D. Yilmazer, Evaluation of the Wound Healing Potential of Achillea biebersteinii Afan. (Asteraceae) by In Vivo Excision and Incision Models, Evid Based Complement Alternat Med 2011 (2011) 474026.

無法下載圖示 全文公開日期 2025/12/30 (校內網路)
全文公開日期 2025/12/30 (校外網路)
全文公開日期 2025/12/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE