簡易檢索 / 詳目顯示

研究生: 鄭淑娟
Shu-Chuan Cheng
論文名稱: 應用於高科技廠房空調系統優化之數據分析框架
A data analytics framework for fab air conditioning system optimization
指導教授: 王孔政
Kung-Jeng Wang
口試委員: 王孔政
Kung-Jeng Wang
曹譽鐘
Yu-Chung Tsao
林希偉
Shi-Woei Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 數據分析冷卻乾盤管系統能源管理工業空調系統外氣空調箱
外文關鍵詞: data analytics, dry-cooling coil, energy management, industrial air conditioning system, make-up air unit
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於全球對暖化及能源永續發展的關注,製造系統的能源管理是邁向工業4.0的一個關鍵議題,因此需要建立數據分析機制來促進高科技廠房對能源優化的需求。本文提出一個數據分析框架,使優化模型能夠被執行在工業空調系統上,該模型包括中央的外氣空調箱(MAU)和冷卻乾盤管系統(DCC)。所提出的優化模型使用迴歸模型來學習能源因子的相關性,並使用遺傳算法來優化能源使用。並提出協作區域控制,以實現更有效的DCC控制。經過實地驗證,所提出的數據分析框架之優化模型執行優於原本的比例積分微分(PID)控制器。DCC和MAU優化模型分別降低36.3%和24.16%的電力成本。這項研究有助於建立高科技廠房之空調系統中的數據分析框架。


    Industrial energy management is one of the key issues in Industrial 4.0 era owing to global warming and sustainability. It reveals the need of a data analytics framework to facilitate fab energy optimization. This paper proposes a data analytics framework to enable the execution of optimization models in the fab air conditioning system, consisting of a centralized make-up air unit (MAU) and a set of dry-cooling coils (DCCs). The proposed optimization model uses regression models for learning correlated energy factors, and genetic algorithms for optimizing of energy usage. Collaborative regional-control in the data proposed framework is proposed to achieve efficient DCCs control. The proposed data analytics framework empowered by optimization is shown in real case to outperform a proportional-integral-derivative controller. The DCC and MAU optimization model performed 36.3% and 24.16% reduction of electricity cost, respectively. This study contributed to formalize data analytics framework in industrial air conditioning systems.

    摘要 Abstract Content of Table Content of Figure 1. Introduction 1.1 Research background 1.2 Research objective 2. Literature Review 2.1 Data analytics framework 2.2 Energy management and optimization 2.3 Summary 3. Modeling 3.1 System structure 3.2 The proposed data analytics framework 3.3 Data stratification 3.4 Optimization model 4. Model Validation 4.1 Model verification 4.2 Field test 5. Conclusion 5.1 Discussion and conclusion 5.2 Future research References

    Balali, F., Nouri, J., Nasiri, A., & Zhao, T. (2020). Data Analytics. In Data Intensive Industrial Asset Management (pp. 105-113). Springer, Cham.
    Chou, J. S., & Ngo, N. T. (2016). Smart grid data analytics framework for increasing energy savings in residential buildings. Automation in Construction, 72, 247-257.
    Chou, J. S., & Telaga, A. S. (2014). Real-time detection of anomalous power consumption. Renewable and Sustainable Energy Reviews, 33, 400-411.
    Chua, K. J., Chou, S. K., Yang, W. M., & Yan, J. (2013). Achieving better energy-efficient air conditioning–a review of technologies and strategies. Applied Energy, 104, 87-104.
    Gaing, Z. L. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE transactions on energy conversion, 19(2), 384-391.
    Gartner (2020) https://www.gartner.com/en
    Hu, S. C., Lin, T., Fu, B. R., Chang, C. K., & Cheng, I. Y. (2019). Analysis of energy efficiency improvement of high-tech fabrication plants. International Journal of Low-Carbon Technologies, 14(4), 508-515.
    Hu, S. C., Lin, T., Huang, S. H., Fu, B. R., & Hu, M. H. (2020). Energy savings approaches for high-tech manufacturing factories. Case Studies in Thermal Engineering, 17, 100569.
    Huang, W. Z., Zaheeruddin, M., & Cho, S. H. (2006). Dynamic simulation of energy management control functions for HVAC systems in buildings. Energy conversion and management, 47(7-8), 926-943.
    Jain, S., Shao, G., & Shin, S. J. (2017). Manufacturing data analytics using a virtual factory representation. International Journal of Production Research, 55(18), 5450-5464.
    Jean-Luc, R., Gonon, F., Favre, L., & Niederhäuser, E. L. (2018, May). Convergence of Multi-Criteria Optimization of a Building Energetic Resources by Genetic Algorithm. In 2018 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE) (pp. 150-155). IEEE.
    Jo, H. C., Kim, S., & Joo, S. K. (2013). Smart heating and air conditioning scheduling method incorporating customer convenience for home energy management system. IEEE transactions on consumer electronics, 59(2), 316-322.
    Kircher, K., Shi, X., Patil, S., & Zhang, K. M. (2010). Cleanroom energy efficiency strategies: Modeling and simulation. Energy and buildings, 42(3), 282-289.
    Kusiak, A., Li, M., & Tang, F. (2010). Modeling and optimization of HVAC energy consumption. Applied Energy, 87(10), 3092-3102.
    Li, X., Wang, Y., Li, N., Han, M., Tang, Y., & Liu, F. (2017). Optimal fractional order PID controller design for automatic voltage regulator system based on reference model using particle swarm optimization. International Journal of Machine Learning and Cybernetics, 8(5), 1595-1605.
    Nemati, M., Braun, M., & Tenbohlen, S. (2018). Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming. Applied energy, 210, 944-963.
    Osman, A. M. S. (2019). A novel big data analytics framework for smart cities. Future Generation Computer Systems, 91, 620-633.
    Puiu, D., Barnaghi, P., Toenjes, R., Kümper, D., Ali, M. I., Mileo, A., ... & Gao, F. (2016). Citypulse: Large scale data analytics framework for smart cities. IEEE Access, 4, 1086-1108.
    Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodríguez-Doncel, V., García-Castro, R., & Gómez-Pérez, A. (2015). Guidelines for Linked Data generation and publication: An example in building energy consumption. Automation in Construction, 57, 178-187.
    Sakr, S., & Elgammal, A. (2016). Towards a comprehensive data analytics framework for smart healthcare services. Big Data Research, 4, 44-58.
    Shan, K., & Wang, S. (2017). Energy efficient design and control of cleanroom environment control systems in subtropical regions–A comparative analysis and on-site validation. Applied energy, 204, 582-595.
    Su, C. L., & Yu, K. T. (2013). Evaluation of Differential Pressure Setpoint of Chilled Water Pumps in Clean Room HVAC Systems for Energy Savings in High-Tech Industries. IEEE Transactions on Industry Applications, 3(49), 1015-1022.
    Suganthi, L., & Samuel, A. A. (2012). Energy models for demand forecasting—A review. Renewable and sustainable energy reviews, 16(2), 1223-1240.
    Tsao, J. M., Hu, S. C., Xu, T., & Chan, D. Y. (2010). Capturing energy-saving opportunities in make-up air systems for cleanrooms of high-technology fabrication plant in subtropical climate. Energy and Buildings, 42(11), 2005-2013.
    Yu, K. T., Su, C. L., & Kuo, J. L. (2016, March). Variable recycled air controls of HVAC systems for energy savings in high-tech industries. In 2016 IEEE International Conference on Industrial Technology (ICIT) (pp. 215-220). IEEE.
    Yu, L., Wang, S., & Lai, K. K. (2005). An integrated data preparation scheme for neural network data analysis. IEEE Transactions on Knowledge and Data Engineering, 18(2), 217-230.
    Zhong, R. Y., Xu, C., Chen, C., & Huang, G. Q. (2017). Big data analytics for physical internet-based intelligent manufacturing shop floors. International journal of production research, 55(9), 2610-2621.
    Zou, H., Yu, Y., Tang, W., & Chen, H. W. M. (2014). FlexAnalytics: a flexible data analytics framework for big data applications with I/O performance improvement. Big Data Research, 1, 4-13.

    無法下載圖示 全文公開日期 2025/06/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE