簡易檢索 / 詳目顯示

研究生: 鄭鴻基
Hung-Chi Cheng
論文名稱: 阻力型垂直軸風力機之實驗研究
Experimental Study of the Resistance-Type Vertical Axis Wind Turbine
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
郭鴻森
Hong-Sen Kou
李基禎
Ji-Jen Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 阻力型垂直軸風力機
外文關鍵詞: Resistance-Type, Vertical Axis, Wind Turbine
相關次數: 點閱:224下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以舊型風力機的最佳化參數為基準,將之套用於新式阻力型風力機設計上,且對其進行穩定性結構分析、原型機製造與性能實驗之整合探討;接著將風力機架設於可拆式垂直軸風力機實驗平台,執行一系列之性能量測評估分析。新型風力機除完成防鏽及漏水處理外,其主軸也比原先規劃地輕薄,且採用輕質葉片又增加全面性的捕風面積,故新型風力機有輕量化的特性,同時相較舊型也更易拆卸及組裝。至於實驗資料擷取系統係利用NI公司的資料擷取卡,將風機測試平台的感測器與發電機參數等類比訊號,轉成數位訊號傳送至電腦;再藉由LabVIEW程式即時監測風場環境以及發電機之輸入與輸出實驗數據,並依風速分類存檔紀錄之。接著將紀錄資料藉撰寫之程式做分析與資料處理,並且以統計概念驗證資料是否充足,以獲得可信的實驗數據供分析與評估,最後並與業界風力機規格做相關氣動性性能比較。
實驗規劃包含葉片數及半徑等參數,進行新型風力機一系列的結構測試實驗,經測試發現五片葉對於新型風力機之穩定性較為良好;從4米風之數據看起來,此新型風力機的功率大於舊型風力機638%,其性能優勢表現非常明顯,且此風機直徑只有2米,相較於舊型來得小。爾後為完成此風力機能在高風速下運轉,本研究隨即強化其結構,並製作直徑2米原型機進行實際風場之性能測試,結果顯示此原型機於4米風運作時,其功率相較舊型風力機(直徑3米)大了37%,在11米風時則大了26%,相較未強化原型之性能優勢降低許多。最後為完成在同樣尺寸下評估新型風力機之性能優勢,將其直徑增至與舊型風力機相同之3米,並製作原型機進行性能測試;從實驗結果可以看出,於4米風時相較於舊型風力機之輸出功率大16倍,而在11米風時,卻無相同之性能優勢出現。推測其主因是強化後之風力機重量過重,以及尚未做最佳化負載調整實驗,故高風速的最大輸出功率無法顯示出來,因此之後於重量減輕部分應將非作動零件換成鋁,並整合風力機實心及空心的部分,及規劃零件材料的選用;至於葉片製作及框架應設計成可配合各種尺寸去拆卸,最後再將模型製作出來進行測試,如此將可大幅改善其高風速之性能表現。


A new drag-type, vertical-axis wind turbine is designed and investigated in this experimental study. First of all, optimized parameters of the old wind turbine are used as the design base for this newly designed wind turbine. The increased wind-capture area and enhancements on the anti-leakage and anti-rust ability are enforced on this new design. Also, its main shaft and blade weight are reduced to make it convenient during maintenance periods. Later, the prototype is manufactured and mounted on a removable test platform for conducting the performance experiment of wind turbine. Moreover, experimental data is recorded using data acquisition system; the ambient condition and power of the new wind turbine are recorded automatically and loaded on a computer. With the help of a visual software programming, Labview, real-time monitoring on the input-output parameters of the generator and the wind condition on the rooftop can be carried out simultaneously. Subsequently, data processing and analysis of the experimental outputs are performed using a computer program incorporating with the statistical data-analysis concepts.
Several geometric parameters of the wind turbine, such as blade number and radius, are considered in the experimental work. Test results indicate that the five-blade wind turbine with a radius of two meters, which is smaller compared to the old one, shows relatively good stability and performance. In addition, for the 4m/s wind speed, this wind turbine has more power output (638%) than that of old wind turbine. Nevertheless, the structure of this designed turbine cannot operate continuously under the high-speed wind. Thereafter, after improving the structure strength, another prototype of the new wind turbine with two-meter diameter is manufactured and tested for low and high wind speed. Results show that the wind power is 37% and 26% more than that of the old wind turbine for 4m/s and 11m/s wind speeds, respectively. Obviously, the performance superiority is downgraded significantly due to the weight increase caused by the strength enhancement. Subsequently, for comparison under the same size, a 3-mter-diameter new wind turbine is constructed for conducting the performance test under the real wind field. Measurements show that for low wind speed (4m/s) the power generation for the new wind turbine is sixteen times than that of the old wind turbine. However, for high wind speed (11m/s), it doesn’t show advantageous performance. This may be due to the heavy weight of the wind turbine and the optimized load experiment is not imposed; as a result, the maximum output power of the high wind speed is not displayed. Consequently, it is suggested that, to reduce the weight, the non-moving parts of the wind turbine should be replaced by aluminum. Also, utilization of hollow material to manufacture removable blades, frames, and the wind-turbine structure can largely reduce the weight. With these suggested modifications, the performance of this new wind turbine should be improved significantly for operating under the high wind speed.

摘 要 I 致 謝 V 目錄 VI 圖索引 IX 表索引 XII 符號索引 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1實驗測量 5 1.3 研究動機與方法 14 1.4 本文大綱 18 第二章 風能與風力機 20 2.1 風與風能 23 2.1.1 風的運動模式 23 2.1.2 風能的基本定義 25 2.2 風力機種類 29 2.2.1 水平軸風車的分類及特徵 32 2.2.2 垂直軸風車的分類及特徵 34 2.3 風力機之運作原理 36 2.3.1 相關參數簡介 36 2.3.2 貝茲動量理論 38 2.3.3 垂直軸風力機最高效率 42 第三章 風機測試實驗平台 46 3.1 實驗機台及儀器說明 46 3.1.1. 配電盤 46 3.1.2. 氣象竿 49 3.2 發電機與資料擷取程式撰寫 54 3.2.1 發電機 54 3.2.2 資料擷取程式撰寫 56 第四章 風力機之強化設計 67 4.1 新型與舊型風力機比較 67 4.1.1 尺寸規格 67 4.1.2 作動機制 69 4.2 新型風力機之結構強化 75 4.2.1軸承強化 77 4.2.2葉片強化 80 4.2.3止擋強化 80 4.3 重量評估與風力機規格比較 81 第五章 風力機之性能實驗探討 89 5.1 實驗方法步驟 89 5.2 未強化之新型風力機 93 5.3 強化之新型風力機 96 5.4 與舊型相同半徑之新型風力機 102 第六章 結論與建議 110 6.1 結論 110 6.2 建議 112 參考文獻 114

[1] 牛山泉,“從基礎理論到風力發電技術”,全華圖書,2010年。
[2] 台灣地區基本風能分佈,能資所技術報告,技資編號06390N033,1991年12月。
[3] Sandia National Laboratories Staff, “Vertical Axis Wind Turbines - The History of the DOE Program,” 1971.
[4] Blackwell, B. F., Sullivan, W. N., Reuter, R. C., and Banas, J. F., “Engineering Development Status of the Darrieus Wind Turbine,” J. ENERGY, Vol. 1, No. 1, pp. 50-64, Jan. 1977.
[5] Sheldahl, Robert, E. and Blackwell, B. F., “Wind Tunnel Performance Data for the Darrieus Wind Turbine with NACA0012 Blades,” SAND 76-0130, 1981.
[6] Bergeles, G., Michos, A., and Athanassissiadis, N., “Velocity Vector and Turbulence in the Symmetry Plane of a Darrieus Wind Generator,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 37, Issue 1, pp. 87-101, 1991.
[7] Fujisawa, N., “On the Torque Mechanism of Savonius Rotors,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 40, No. 2, pp. 77-92, 1992.
[8] Mertens, Sander, “Wind Energy in Urban Areas: Concentrator Effects for Wind Turbines Close to Buildings,“ Refocus, Volume 3, Issue 2, pp. 22-24, 2002.
[9] Rogers, A. L. and Maxwell, J. F., “Wind Turbine Acoustic Noise,” A White Paper, Renewable Energy Research Laboratory, Department of Mechanical and Industrial Engineering University of Massachusetts at Amherst , pp. 8-12, 2006.
[10] Van Bussel, G. J. W., Mertens, S., Polinder, H., and Sidler, H. F. A., “TURBY: Concept and Realization of a Small VAWT for the Built Environment," Proceeding of EAWE/EWEA Conference 2004, Delft, Netherlands, April 19-21, 2004.
[11] 陳國忠,“葉片扭轉角對水平式風力機性能影響之數值研究”,台灣科技大學機械工程研究所碩士論文,2002年。
[12] 楊淳宇,“大尺度渦漩模擬在垂直軸風力發電機之應用”,臺灣科技大學機械工程研究所碩士論文,2007年。
[13] 黃鴻鈞,“旋轉中的垂直軸風力發電機葉片性能之數值分析”,台灣科技大學機械工程研究所碩士論文,2008年。
[14] 王世宇,“風力發電機於大樓屋頂之流場分析”,台灣科技大學機械工程研究所碩士論文,2010年。
[15] Lin, S. C. and Yanto, H. A., “Experimental and Numerical Investigation of Flow Fields Small Vertical Axis Wind Turbine on Augmented to Roof Top Building,” National Science Council, Project Report NSC 96-2221-E-011-053-MY3, 2010.
[16] Paraschivoiu, Ion, “Wind Turbine Design with Emphasis on Darrieus Concept,” Ecole Polytechnique de Motreal, 2002.
[17] 牛山泉與三野正洋,“小型風車設計與製造”,復漢出版社,1994年7月。

QR CODE