簡易檢索 / 詳目顯示

研究生: 阮黃光耀
NGUYEN HUYNH QUANG DIEU
論文名稱: 去細胞豬膀胱基質之生醫應用發展
Decellularization of Porcine Bladder Matrix and The Development of Its Biomedical Applications
指導教授: 高震宇
Chen-Yu Kao
口試委員: 楊銘乾
Ming-Chien Yang
蔡協致
Hsieh-Chih Tsai
羅俊民
Chun-Min Lo
徐善慧
Shan-Hui Hsu
高震宇
Chen-Yu Kao
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 135
中文關鍵詞: 膀胱細胞外基質水凝膠牙髓幹細胞免疫調節
外文關鍵詞: bladder, extracellular matrix, hydrogel, dental pulp stem cell, immunomodulation
相關次數: 點閱:437下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

細胞外基質(Extracellular matrix, ECM)是所有組織與器官中無細胞的三維結構,其成分主要由細胞分泌與維持。此結構為高度動態的微環境,調節細胞增生,附著,移動,極性,分化等重要行為特徵。在組織工程中,膀胱基質(Urinary bladder matrix, UBM)為一種被廣泛研究的ECM。儘管大部分UBM水膠均是由過氧乙酸(Peracetic acid, PAA)去細胞製成,然而近期的研究卻顯示,以PAA去細胞並不是一個可靠的方法。若以更強的洗滌劑,例如十二烷基硫酸鈉(Sodium dodecyl sulfate, SDS)去細胞,也許是更加可行的辦法,但其對水膠特性的影響尚未明朗。因此第一篇研究的目標為以SDS為基礎,制定一個更可靠的去細胞水膠製程,並與廣泛使用的PAA法進行水膠性質的比較。研究結果顯示,SDS比PAA有更加的去細胞效力;然而除成膠動力學外,兩種製程的水膠在生化組成,表面型態,流變學等性質上並無顯著差異。由SDS去細胞製成的水膠,在體外試驗中展現了良好的細胞相容性,此結果表明,SDS為取得去細胞UBM更好的洗滌劑,因為它有較低的免疫誘導性。此研究中以SDS為基礎建立的水膠製程,所得水膠在各項性質與廣泛使用的PAA製程相似,(且有更佳的細胞相容性),是組織重建中相當有潛力的材料。
儘管可將膀胱分成UBM和其他基質(Subtype ECM, sECM),大部分研究僅使用UBM製備水膠而忽略了sECM的潛力。另外,將膀胱分離為UBM和sECM是一件相當耗時的流程,因此直接運用全膀胱(Whole bladder, WB)可能可以提高產率。基於以上觀察,第二部分的研究目標在比較以UBM,sECM和WB所得之水膠。結果顯示三種不同分層製成的水膠,在生化組成上沒有顯著差異;然而在成膠動力學,流變學,型態學方面,UBM和sECM有部分差異,UBM和WB水膠之間卻意外的相似。體外細胞實驗中,進行L929細胞活性測試與C2C12分化測試,三種水膠呈現相似的結果。此結果可初步推論sECM不應該被忽視,WB的運用可替代僅使用UBM的流程,簡化分層的麻煩,達到工業化大量製造的可能。
近年全球遭遇COVID-19大流行,此病毒攻擊肺部與呼吸道使免疫系統失調,造成細胞激素釋放症候群(Cytokine release syndrome, CRS)。間質幹細胞(Mesenchymal Stem Cells , MSCs) 具有免疫調節功能,能促進內生性的再生作用,因此幹細胞療法被視為有潛力治療COVID-19的方法。然而,幹細胞無法停留在肺部中夠長時間以達到其治療效果是一大問題。豬膀胱來源的細胞外基質(Extracellular matrix from porcine bladders, B-ECM)已被發現能調節細胞活動,並具有免疫調節特性,因此可以推測B-ECM水膠也許是讓MSCs生長的良好介質,並可以使MSCs停留在肺部夠久以達治療效果。第三篇研究中,建立了ECM分解物和MSCs與巨噬細胞的共培養系統,用以研究感染情況下ECM和MSCs的免疫調節特性。結果顯示B-ECM分解物可減低巨噬細胞誘發促發炎反應,並增加抗發炎激素的釋放。在仿體內實驗的共培養系統中,培養在B-ECM上的MSCs在基因和蛋白質層面都顯示出免疫調節的特性。B-ECM分解物和MSCs條件培養基均促使肺泡上皮的癒合。此研究結果提供ECM和MSCs免疫調節特性研究的初步結果,可做為未來體內研究參考,進而應用於再生醫學。


Extracellular matrix (ECM) is a three-dimensional lattice structure secreted and maintained by the cells, also known as the non-cellular component of all tissues and organs. It is a highly dynamic micro-environment which determines and modulates the most essential behaviors and characteristics of cells such as proliferation, adhesion, migration, polarity, differentiation, and apoptosis. Among different types of ECM, urinary bladder matrix (UBM) is one of the most studied ECM in the tissue engineering field. Although almost all of the UBM hydrogels were prepared by using peracetic acid (PAA), recent studies indicated that PAA was not a trustworthy way to decellularize UBM. A stronger detergent, such as sodium dodecyl sulfate (SDS), may help tackle this issue; however, its effects on the hydrogels’ characteristics remain unknown. Therefore, the objective of the first study of this thesis was to develop a more reliable protocol to decellularize UBM, using SDS, and to compare the characteristics of hydrogels obtained from this method to the widely employed technique, using PAA. The results indicated that SDS was superior to PAA in decellularization efficacy. Different decellularization methods led to dissimilar gelation kinetics; however, the methods did not affect other hydrogel characteristics in terms of biochemical composition, surface morphology and rheological properties. The SDS-treated hydrogels possessed excellent cytocompatibility in vitro. These results showed that the SDS decellularization method could offer a more stable and safer way to obtain acellular UBM, due to reducing immunogenicity. The hydrogels prepared from this technique had comparable characteristics as those from PAA and could be a potential candidate as a scaffold for tissue remodeling.
Although there are two different ECM types inside a bladder, i.e. urinary bladder matrix (UBM) and a subtype ECM (sECM), most of the studies only employed UBM for hydrogel fabrication, and overlooked the potential use of sECM. In another aspect, the delamination of UBM from bladders is a time-consuming process; consequently, utilization of the whole bladder (WB) will likely increase production yield. Therefore, the objective of the second study of this dissertation was to fabricate hydrogels from sECM and WB and compared them to UBM. The results indicated that different layers of the bladder shared almost the same biochemical composition. In term of gelation kinetics, rheology and morphology, although hydrogels from UBM and sECM exhibited some discrepancies, those from UBM and WB interestingly possessed almost the same characteristics. In in vitro studies, all the hydrogels possessed nearly the same biochemical effects towards L929 viability and C2C12 differentiation. These results could preliminarily indicate that the use of sECM should no longer be ignored, and WB could be a promising substitution for UBM hydrogels, eliminating the need for time-costing delamination process, as well as increasing the possibility for mass production.
Currently, almost every country in the world has ever suffered from COVID-19 pandemic. COVID-19 primarily attacks the lungs and respiratory tract through dysregulate the immune system which causes a cytokine release syndrome (CRS). Mesenchymal stem cells (MSCs) possess immunomodulatory properties and capacity for endogenous regeneration. Therefore, MSC therapy is a promising treatment strategy for COVID-19. However, the cells cannot stay in the lung long enough to exert their function. The extracellular matrix from porcine bladders (B-ECM) has been shown not only to regulate cellular activities but also to possess immunoregulatory characteristics. Therefore, it can be hypothesized that B-ECM hydrogel could be an excellent scaffold for MSCs to grow and could anchor MSCs long enough in the lung so that they can exhibit their immunomodulatory functions. In this study, ECM degradation products and a co-culture system of MSCs and macrophages were developed to study the immunomodulatory properties of ECM and MSCs under septic conditions. The results showed that B-ECM degradation products could decrease pro-inflammatory and increase anti-inflammatory cytokines from macrophages. In an in vivo mimicking co-culture system, MSCs cultured on B-ECM hydrogel exhibited immunomodulatory properties at both gene and protein levels. Both B-ECM degradation products and MSC conditioned medium supported the wound healing of alveolar epithelial cells. The results from the study could offer a basis for investigation of immunomodulation by ECM and MSCs before conducting in vivo experiments, which could later be applied in regenerative medicine.

CHAPTER 1: INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 1.3 Materials, Reagents and Instruments 4 1.3.1 Materials and Reagents 4 1.3.2 Instruments 5 1.3.3 Statistical analysis 5 CHAPTER 2: LITERATURE REVIEW 7 2.1 Extracellular matrix 7 2.1.1 Major ECM components 7 2.1.2 Structure the ECM 8 2.1.3 Functions of the ECM 10 2.2 Decellularization 10 2.2.1 Rationale for decellularization of ECM [5] 10 2.2.2 Decellularization strategies 11 2.2.3 Assessment of Decellularization 15 2.3 ECM hydrogel 16 2.3.1 ECM hydrogel formation 18 2.3.2 ECM hydrogel characterization 20 2.4 Porcine bladder 22 2.4.1 The bladder ECM architecture 22 2.4.2 Urinary bladder matrix 23 2.5 Immunomodulation property of ECM materials 24 2.6 Immunomodulation property of dental pulp stem cells 25 CHAPTER 3: EXPERIMENTAL METHODS 27 3.1 Bladder decellularization 27 3.1.1 Bladder delamination and pre-processing 27 3.1.2 Decellularization of UBM using PAA 27 3.1.3 Decellularization of bladder ECM using SDS 27 3.2 Decellularization Efficiency 27 3.2.1 dsDNA Quantification 27 3.2.2 DAPI Staining 28 3.2.3 Histological Staining 28 3.2.4 DNA Electrophoresis 28 3.2.5 Residual SDS Detection 28 3.3 Biochemical Characterization 29 3.3.1 Collagen and sGAG 29 3.3.2 Relative quantification of protein profile by liquid chromatography mass spectrometry (LC-MS/MS) 29 3.4 ECM Hydrogel Preparation 30 3.5 Turbidimetric Gelation Kinetics 30 3.6 Rheologic Testing 30 3.7 Hydrogel Surface Morphology 31 3.8 Cytocompatibility 31 3.8.1 In Vitro Cytotoxicity 31 3.8.2 2D Surface Culture 31 3.8.3 3D Cell Encapsulation 32 3.9 Effect on C2C12 Myogenic Differentiation 32 3.9.1 C2C12 cell culture 32 3.9.2 Immunocytochemistry 33 3.9.3 Western blot 33 3.10 Effect on C2C12 Osteoblast Differentiation 34 3.10.1 Osteoblast differentiation 34 3.10.2 Alizarin red staining (ARS) 34 3.10.3 Alkaline phosphatase (ALP) activity 34 3.11 ECM Hydrogels In Vitro Degradation 35 3.12 Preparation of ECM degradation products 35 3.13 Mesenchymal Stem Cell Verification 35 3.14 DPSC conditioned-medium collection 36 3.15 Culture of RAW 264.7 with digested B-ECM supplement 36 3.16 Culture of RAW 264.7 with conditioned-medium supplement 36 3.17 DPSC Growth rate on hydrogel surface 36 3.18 “In vitro mimicking” co-culture of RAW 264.7 mouse macrophages with human DPSC 37 3.19 Macrophage Response Assays 37 3.20 Immunomodulatory Assay 38 3.21 Real-Time Quantitative PCR (qPCR) 38 3.22 Enzyme-Linked Immunosorbent Assays (ELISA) 38 3.23 Wound healing assay 39 CHAPTER 4: CHARACTERIZATION OF PORCINE URINARY BLADDER MATRIX HYDROGELS FROM SODIUM DODECYL SULFATE DECELLULARIZATION METHOD 40 4.1 Introduction 40 4.2 Results 42 4.2.1 Decellularization Efficiency 42 4.2.2 Residual SDS Detection 43 4.2.3 Biochemical Characterization 44 4.2.4 Turbidimetric Gelation Kinetics 44 4.2.5 Rheology Study 46 4.2.6 Hydrogel Surface Morphology 47 4.2.7 Cytocompatibility 49 4.3 Discussion 50 4.4 Conclusions 55 CHAPTER 5: EVALUATING THE EFFECT OF TISSUE SELECTION ON THE CHARACTERISTICS OF EXTRACELLULAR MATRIX HYDROGELS FROM DECELLULARIZED PORCINE BLADDERS 57 5.1 Introduction 57 5.2 Results 59 5.2.1 Decellularization confirmation 59 5.2.2 Biochemical Composition 60 5.2.3 Turbidity Measurement 62 5.2.4 Rheological Measurements 64 5.2.5 Scanning Electron Microscopy 66 5.2.6 Effect on L292 Fibroblast in vitro Cell Viability 67 5.2.7 Coating confirmation 68 5.2.8 Effect On C2C12 Myogenic Differentiation 69 5.2.9 Effect on C2C12 Osteoblast Differentiation 70 5.3 Discussion 71 5.4 Conclusions 77 CHAPTER 6: INVESTIGATING THE IMMUNOMODULATORY POTENTIAL OF DENTAL PULP STEM CELLS CULTURED ON DECELLULARIZED PORCINE BLADDER HYDROGEL TOWARDS MACROPHAGE RESPONSE IN VITRO 78 6.1 Introduction 78 6.2 Results 81 6.2.1 Decellularization Confirmation 81 6.2.2 Mesenchymal Stem Cell Verification 81 6.2.3 B-ECM Hydrogels In Vitro Degradation 82 6.2.4 DPSC Proliferation on Hydrogel Surface 83 6.2.5 Macrophage Response Assays 83 6.2.6 Immunomodulatory Effect of Digested B-ECM towards RAW Cells 84 6.2.7 Immunomodulatory Effect of DPSC on B-ECM Hydrogel towards RAW Cell under “In Vivo Mimicking” Co-Culture System 85 6.2.8 Wound Healing Assay 86 6.3 Discussion 87 6.4 Conclusion 93 CHAPTER 7: SUMMARY AND OUTLOOK 94 7.1 Summary 94 7.2 Outlook 94 REFERENCES 95 APPENDIX 113

1. Mantha, S.; Pillai, S.; Khayambashi, P.; Upadhyay, A.; Zhang, Y.; Tao, O.; Pham, H.M.; Tran, S.D. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. Materials (Basel) 2019, 12, 3323, doi:10.3390/ma12203323.
2. Hussey, G.S.; Dziki, J.L.; Badylak, S.F. Extracellular matrix-based materials for regenerative medicine. Nature Reviews Materials 2018, 3, 159-173, doi:10.1038/s41578-018-0023-x.
3. Evans, N.D.; Gentleman, E.; Polak, J.M. Scaffolds for stem cells. Materials Today 2006, 9, 26-33, doi:https://doi.org/10.1016/S1369-7021(06)71740-0.
4. Saldin, L.T.; Cramer, M.C.; Velankar, S.S.; White, L.J.; Badylak, S.F. Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta biomaterialia 2017, 49, 1-15, doi:10.1016/j.actbio.2016.11.068.
5. Gilbert, T.W.; Sellaro, T.L.; Badylak, S.F. Decellularization of tissues and organs. Biomaterials 2006, 27, 3675-3683, doi:10.1016/j.biomaterials.2006.02.014.
6. Sharma, D.; Zhao, F. Updates on clinical trials evaluating the regenerative potential of allogenic mesenchymal stem cells in COVID-19. npj Regenerative Medicine 2021, 6, 37, doi:10.1038/s41536-021-00147-x.
7. Dziki, J.L.; Huleihel, L.; Scarritt, M.E.; Badylak, S.F. Extracellular Matrix Bioscaffolds as Immunomodulatory Biomaterials<sup/>. Tissue Eng Part A 2017, 23, 1152-1159, doi:10.1089/ten.TEA.2016.0538.
8. Rowley, A.T.; Nagalla, R.R.; Wang, S.-W.; Liu, W.F. Extracellular Matrix-Based Strategies for Immunomodulatory Biomaterials Engineering. Advanced healthcare materials 2019, 8, e1801578-e1801578, doi:10.1002/adhm.201801578.
9. Wolf, M.T.; Daly, K.A.; Brennan-Pierce, E.P.; Johnson, S.A.; Carruthers, C.A.; D'Amore, A.; Nagarkar, S.P.; Velankar, S.S.; Badylak, S.F. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 2012, 33, 7028-7038, doi:10.1016/j.biomaterials.2012.06.051.
10. Medberry, C.J.; Crapo, P.M.; Siu, B.F.; Carruthers, C.A.; Wolf, M.T.; Nagarkar, S.P.; Agrawal, V.; Jones, K.E.; Kelly, J.; Johnson, S.A.; et al. Hydrogels derived from central nervous system extracellular matrix. Biomaterials 2013, 34, 1033-1040, doi:10.1016/j.biomaterials.2012.10.062.
11. Zhang, L.; Zhang, F.; Weng, Z.; Brown, B.N.; Yan, H.; Ma, X.M.; Vosler, P.S.; Badylak, S.F.; Dixon, C.E.; Cui, X.T.; et al. Effect of an inductive hydrogel composed of urinary bladder matrix upon functional recovery following traumatic brain injury. Tissue Eng Part A 2013, 19, 1909-1918, doi:10.1089/ten.TEA.2012.0622.
12. Ghuman, H.; Mauney, C.; Donnelly, J.; Massensini, A.R.; Badylak, S.F.; Modo, M. Biodegradation of ECM hydrogel promotes endogenous brain tissue restoration in a rat model of stroke. Acta biomaterialia 2018, 80, 66-84, doi:10.1016/j.actbio.2018.09.020.
13. Brown, B.N.; Valentin, J.E.; Stewart-Akers, A.M.; McCabe, G.P.; Badylak, S.F. Macrophage phenotype and remodeling outcomes in response to biologic scaffolds with and without a cellular component. Biomaterials 2009, 30, 1482-1491, doi:10.1016/j.biomaterials.2008.11.040.
14. Sadtler, K.; Sommerfeld, S.D.; Wolf, M.T.; Wang, X.; Majumdar, S.; Chung, L.; Kelkar, D.S.; Pandey, A.; Elisseeff, J.H. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Seminars in immunology 2017, 29, 14-23, doi:10.1016/j.smim.2017.05.002.
15. Zayed, M.; Iohara, K. Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019. Cell Transplant 2020, 29, 963689720952089, doi:10.1177/0963689720952089.
16. Yue, B. Biology of the extracellular matrix: an overview. J Glaucoma 2014, 23, S20-S23, doi:10.1097/IJG.0000000000000108.
17. Kusindarta, D.; Wihadmadyatami, H. The Role of Extracellular Matrix in Tissue Regeneration. 2018.
18. Kular, J.K.; Basu, S.; Sharma, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of tissue engineering 2014, 5, 2041731414557112, doi:10.1177/2041731414557112.
19. Kular, J.K.; Basu, S.; Sharma, R.I. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of tissue engineering 2014, 5, 2041731414557112, doi:10.1177/2041731414557112.
20. Lopresti, S.T.; Brown, B.N. Chapter 4 - Host Response to Naturally Derived Biomaterials. In Host Response to Biomaterials, Badylak, S.F., Ed.; Academic Press: Oxford, 2015; pp. 53-79.
21. Gilbert, T.W. Strategies for tissue and organ decellularization. Journal of Cellular Biochemistry 2012, 113, 2217-2222, doi:https://doi.org/10.1002/jcb.24130.
22. Mendibil, U.; Ruiz-Hernandez, R.; Retegi-Carrion, S.; Garcia-Urquia, N.; Olalde-Graells, B.; Abarrategi, A. Tissue-Specific Decellularization Methods: Rationale and Strategies to Achieve Regenerative Compounds. Int J Mol Sci 2020, 21, 5447, doi:10.3390/ijms21155447.
23. Gilpin, A.; Yang, Y. Decellularization Strategies for Regenerative Medicine: From Processing Techniques to Applications. Biomed Res Int 2017, 2017, 9831534, doi:10.1155/2017/9831534.
24. Keane, T.J.; Swinehart, I.T.; Badylak, S.F. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods (San Diego, Calif.) 2015, 84, 25-34, doi:10.1016/j.ymeth.2015.03.005.
25. Rieder, E.; Kasimir, M.T.; Silberhumer, G.; Seebacher, G.; Wolner, E.; Simon, P.; Weigel, G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of thoracic and cardiovascular surgery 2004, 127, 399-405, doi:10.1016/j.jtcvs.2003.06.017.
26. Varaprasad, K.; Raghavendra, G.M.; Jayaramudu, T.; Yallapu, M.M.; Sadiku, R. A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials science & engineering. C, Materials for biological applications 2017, 79, 958-971, doi:10.1016/j.msec.2017.05.096.
27. Drury, J.L.; Mooney, D.J. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003, 24, 4337-4351, doi:10.1016/s0142-9612(03)00340-5.
28. Boso, D.; Maghin, E.; Carraro, E.; Giagante, M.; Pavan, P.; Piccoli, M. Extracellular Matrix-Derived Hydrogels as Biomaterial for Different Skeletal Muscle Tissue Replacements. 2020, 13, 2483.
29. Zantop, T.; Gilbert, T.W.; Yoder, M.C.; Badylak, S.F. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. Journal of orthopaedic research : official publication of the Orthopaedic Research Society 2006, 24, 1299-1309, doi:10.1002/jor.20071.
30. Gilbert, T.W.; Stolz, D.B.; Biancaniello, F.; Simmons-Byrd, A.; Badylak, S.F. Production and characterization of ECM powder: implications for tissue engineering applications. Biomaterials 2005, 26, 1431-1435, doi:10.1016/j.biomaterials.2004.04.042.
31. Brightman, A.O.; Rajwa, B.P.; Sturgis, J.E.; McCallister, M.E.; Robinson, J.P.; Voytik-Harbin, S.L. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers 2000, 54, 222-234, doi:10.1002/1097-0282(200009)54:3<222::Aid-bip80>3.0.Co;2-k.
32. Ghazanfari, S.; Khademhosseini, A.; Smit, T.H. Mechanisms of lamellar collagen formation in connective tissues. Biomaterials 2016, 97, 74-84, doi:10.1016/j.biomaterials.2016.04.028.
33. Hulmes, D.J.S. Collagen Diversity, Synthesis and Assembly. In Collagen: Structure and Mechanics, Fratzl, P., Ed.; Springer US: Boston, MA, 2008; pp. 15-47.
34. Tibbitt, M.W.; Anseth, K.S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng 2009, 103, 655-663, doi:10.1002/bit.22361.
35. Freytes, D.O.; Martin, J.; Velankar, S.S.; Lee, A.S.; Badylak, S.F. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 2008, 29, 1630-1637, doi:10.1016/j.biomaterials.2007.12.014.
36. Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677-689, doi:10.1016/j.cell.2006.06.044.
37. Fernández-Pérez, J.; Ahearne, M. The impact of decellularization methods on extracellular matrix derived hydrogels. Scientific Reports 2019, 9, 14933, doi:10.1038/s41598-019-49575-2.
38. Ajalloueian, F.; Lemon, G.; Hilborn, J.; Chronakis, I.S.; Fossum, M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nature reviews. Urology 2018, 15, 155-174, doi:10.1038/nrurol.2018.5.
39. Puckett, Y.; Pham, T.; McReynolds, S.; Ronaghan, C.A. Porcine Urinary Bladder Matrix for Management of Infected Radiation Mastectomy Wound. Cureus 2017, 9, e1451-e1451, doi:10.7759/cureus.1451.
40. Andrukhov, O.; Behm, C.; Blufstein, A.; Rausch-Fan, X. Immunomodulatory properties of dental tissue-derived mesenchymal stem cells: Implication in disease and tissue regeneration. World J Stem Cells 2019, 11, 604-617, doi:10.4252/wjsc.v11.i9.604.
41. Lee, J.S.; Shin, J.; Park, H.M.; Kim, Y.G.; Kim, B.G.; Oh, J.W.; Cho, S.W. Liver extracellular matrix providing dual functions of two-dimensional substrate coating and three-dimensional injectable hydrogel platform for liver tissue engineering. Biomacromolecules 2014, 15, 206-218, doi:10.1021/bm4015039.
42. DeQuach, J.A.; Yuan, S.H.; Goldstein, L.S.; Christman, K.L. Decellularized porcine brain matrix for cell culture and tissue engineering scaffolds. Tissue Eng Part A 2011, 17, 2583-2592, doi:10.1089/ten.TEA.2010.0724.
43. Rauch, C.; Brunet, A.C.; Deleule, J.; Farge, E. C2C12 myoblast/osteoblast transdifferentiation steps enhanced by epigenetic inhibition of BMP2 endocytosis. American journal of physiology. Cell physiology 2002, 283, C235-243, doi:10.1152/ajpcell.00234.2001.
44. D'Andrea, P.; Civita, D.; Cok, M.; Ulloa Severino, L.; Vita, F.; Scaini, D.; Casalis, L.; Lorenzon, P.; Donati, I.; Bandiera, A. Myoblast Adhesion, Proliferation and Differentiation on Human Elastin-Like Polypeptide (HELP) Hydrogels. Journal of Applied Biomaterials & Functional Materials 2017, 15, 43-53, doi:10.5301/jabfm.5000331.
45. Wu, Y.; Zhou, J.; Li, Y.; Zhou, Y.; Cui, Y.; Yang, G.; Hong, Y. Rap1A Regulates Osteoblastic Differentiation via the ERK and p38 Mediated Signaling. PLoS One 2015, 10, e0143777-e0143777, doi:10.1371/journal.pone.0143777.
46. Wang, B.; Li, W.; Dean, D.; Mishra, M.K.; Wekesa, K.S. Enhanced hepatogenic differentiation of bone marrow derived mesenchymal stem cells on liver ECM hydrogel. Journal of Biomedical Materials Research Part A 2018, 106, 829-838, doi:https://doi.org/10.1002/jbm.a.36278.
47. Sicari, B.M.; Dziki, J.L.; Siu, B.F.; Medberry, C.J.; Dearth, C.L.; Badylak, S.F. The promotion of a constructive macrophage phenotype by solubilized extracellular matrix. Biomaterials 2014, 35, 8605-8612, doi:10.1016/j.biomaterials.2014.06.060.
48. Stojanović, S.; Najman, S. The Effect of Conditioned Media of Stem Cells Derived from Lipoma and Adipose Tissue on Macrophages' Response and Wound Healing in Indirect Co-culture System In Vitro. Int J Mol Sci 2019, 20, 1671, doi:10.3390/ijms20071671.
49. Rodrigues Neves, C.T.; Spiekstra, S.W.; de Graaf, N.P.J.; Rustemeyer, T.; Feilzer, A.J.; Kleverlaan, C.J.; Gibbs, S. Titanium salts tested in reconstructed human skin with integrated MUTZ-3-derived Langerhans cells show an irritant rather than a sensitizing potential. Contact dermatitis 2020, 83, 337-346, doi:10.1111/cod.13666.
50. Kooreman, N.G.; de Almeida, P.E.; Stack, J.P.; Nelakanti, R.V.; Diecke, S.; Shao, N.Y.; Swijnenburg, R.J.; Sanchez-Freire, V.; Matsa, E.; Liu, C.; et al. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics. Cell reports 2017, 20, 1978-1990, doi:10.1016/j.celrep.2017.08.003.
51. Tellmann, G. The E-Method: a highly accurate technique for gene-expression analysis. Nature Methods 2006, 3, i-ii, doi:10.1038/nmeth894.
52. Chen, J.; Li, Y.; Hao, H.; Li, C.; Du, Y.; Hu, Y.; Li, J.; Liang, Z.; Li, C.; Liu, J.; et al. Mesenchymal Stem Cell Conditioned Medium Promotes Proliferation and Migration of Alveolar Epithelial Cells under Septic Conditions In Vitro via the JNK-P38 Signaling Pathway. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology 2015, 37, 1830-1846, doi:10.1159/000438545.
53. Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. Journal of Cell Science 2010, 123, 4195, doi:10.1242/jcs.023820.
54. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 2014, 15, 786-801, doi:10.1038/nrm3904.
55. Spang, M.T.; Christman, K.L. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta biomaterialia 2018, 68, 1-14, doi:10.1016/j.actbio.2017.12.019.
56. Brown, B.; Lindberg, K.; Reing, J.; Stolz, D.B.; Badylak, S.F. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 2006, 12, 519-526, doi:10.1089/ten.2006.12.519.
57. Crapo, P.M.; Tottey, S.; Slivka, P.F.; Badylak, S.F. Effects of biologic scaffolds on human stem cells and implications for CNS tissue engineering. Tissue Eng Part A 2014, 20, 313-323, doi:10.1089/ten.TEA.2013.0186.
58. Faust, A.; Kandakatla, A.; van der Merwe, Y.; Ren, T.; Huleihel, L.; Hussey, G.; Naranjo, J.D.; Johnson, S.; Badylak, S.; Steketee, M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. Journal of Biomaterials Applications 2017, 31, 1277-1295, doi:10.1177/0885328217698062.
59. Keane, T.J.; Londono, R.; Turner, N.J.; Badylak, S.F. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials 2012, 33, 1771-1781, doi:10.1016/j.biomaterials.2011.10.054.
60. Huleihel, L.; Hussey, G.S.; Naranjo, J.D.; Zhang, L.; Dziki, J.L.; Turner, N.J.; Stolz, D.B.; Badylak, S.F. Matrix-bound nanovesicles within ECM bioscaffolds. Science advances 2016, 2, e1600502, doi:10.1126/sciadv.1600502.
61. White, L.J.; Taylor, A.J.; Faulk, D.M.; Keane, T.J.; Saldin, L.T.; Reing, J.E.; Swinehart, I.T.; Turner, N.J.; Ratner, B.D.; Badylak, S.F. The impact of detergents on the tissue decellularization process: A ToF-SIMS study. Acta biomaterialia 2017, 50, 207-219, doi:10.1016/j.actbio.2016.12.033.
62. Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233-3243, doi:10.1016/j.biomaterials.2011.01.057.
63. Rosario, D.J.; Reilly, G.C.; Ali Salah, E.; Glover, M.; Bullock, A.J.; Macneil, S. Decellularization and sterilization of porcine urinary bladder matrix for tissue engineering in the lower urinary tract. Regenerative medicine 2008, 3, 145-156, doi:10.2217/17460751.3.2.145.
64. Silva-Benítez, E.; Soto-Sáinz, E.; Pozos-Guillen, A.; Romero-Quintana, J.G.; Aguilar-Medina, M.; Ayala-Ham, A.; Peña-Martínez, E.; Ramos-Payán, R.; Flores, H. Quantification of DNA in urinary porcine bladder matrix using the ACTB gene. In Vitro Cellular & Developmental Biology - Animal 2015, 51, 1040-1046, doi:10.1007/s11626-015-9927-6.
65. Gaetani, R.; Aude, S.; DeMaddalena, L.L.; Strassle, H.; Dzieciatkowska, M.; Wortham, M.; Bender, R.H.F.; Nguyen-Ngoc, K.V.; Schmid-Schöenbein, G.W.; George, S.C.; et al. Evaluation of Different Decellularization Protocols on the Generation of Pancreas-Derived Hydrogels. Tissue engineering. Part C, Methods 2018, 24, 697-708, doi:10.1089/ten.TEC.2018.0180.
66. Badylak, S.F.; Freytes, D.O.; Gilbert, T.W. Extracellular matrix as a biological scaffold material: Structure and function. Acta biomaterialia 2009, 5, 1-13, doi:https://doi.org/10.1016/j.actbio.2008.09.013.
67. Bissell, M.J.; Hall, H.G.; Parry, G. How does the extracellular matrix direct gene expression? Journal of Theoretical Biology 1982, 99, 31-68, doi:https://doi.org/10.1016/0022-5193(82)90388-5.
68. Syed, O.; Walters, N.J.; Day, R.M.; Kim, H.-W.; Knowles, J.C. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta biomaterialia 2014, 10, 5043-5054, doi:https://doi.org/10.1016/j.actbio.2014.08.024.
69. Gratzer, P.F. Decellularized Extracellular Matrix. In Encyclopedia of Biomedical Engineering, Narayan, R., Ed.; Elsevier: Oxford, 2019; pp. 86-96.
70. El-Ashram, S.; Al Nasr, I.; Suo, X. Nucleic acid protocols: Extraction and optimization. Biotechnology Reports 2016, 12, 33-39, doi:https://doi.org/10.1016/j.btre.2016.10.001.
71. Badylak, S.F.; Gilbert, T.W. Immune response to biologic scaffold materials. Seminars in immunology 2008, 20, 109-116, doi:10.1016/j.smim.2007.11.003.
72. Fermor, H.L.; Russell, S.L.; Williams, S.; Fisher, J.; Ingham, E. Development and characterisation of a decellularised bovine osteochondral biomaterial for cartilage repair. Journal of Materials Science: Materials in Medicine 2015, 26, 186, doi:10.1007/s10856-015-5517-0.
73. Alizadeh, M.; Rezakhani, L.; Soleimannejad, M.; Sharifi, E.; Anjomshoa, M.; Alizadeh, A. Evaluation of vacuum washing in the removal of SDS from decellularized bovine pericardium: method and device description. Heliyon 2019, 5, e02253, doi:https://doi.org/10.1016/j.heliyon.2019.e02253.
74. Uygun, B.E.; Soto-Gutierrez, A.; Yagi, H.; Izamis, M.-L.; Guzzardi, M.A.; Shulman, C.; Milwid, J.; Kobayashi, N.; Tilles, A.; Berthiaume, F.; et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nature Medicine 2010, 16, 814-820, doi:10.1038/nm.2170.
75. Gilpin, S.E.; Guyette, J.P.; Gonzalez, G.; Ren, X.; Asara, J.M.; Mathisen, D.J.; Vacanti, J.P.; Ott, H.C. Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale. The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation 2014, 33, 298-308, doi:10.1016/j.healun.2013.10.030.
76. Ott, H.C.; Matthiesen, T.S.; Goh, S.-K.; Black, L.D.; Kren, S.M.; Netoff, T.I.; Taylor, D.A. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nature Medicine 2008, 14, 213-221, doi:10.1038/nm1684.
77. Wang, Y.; Bao, J.; Wu, Q.; Zhou, Y.; Li, Y.; Wu, X.; Shi, Y.; Li, L.; Bu, H. Method for perfusion decellularization of porcine whole liver and kidney for use as a scaffold for clinical-scale bioengineering engrafts. Xenotransplantation 2015, 22, 48-61, doi:10.1111/xen.12141.
78. Claudio-Rizo, J.; Delgado, J.; Quintero, I.; Mata-Mata, J.; Mendoza-Novelo, B. Decellularized ECM-Derived Hydrogels: Modification and Properties. 2018.
79. Tukmachev, D.; Forostyak, S.; Koci, Z.; Zaviskova, K.; Vackova, I.; Vyborny, K.; Sandvig, I.; Sandvig, A.; Medberry, C.J.; Badylak, S.F.; et al. Injectable Extracellular Matrix Hydrogels as Scaffolds for Spinal Cord Injury Repair. Tissue Eng Part A 2016, 22, 306-317, doi:10.1089/ten.TEA.2015.0422.
80. Freytes, D.O.; O'Neill, J.D.; Duan-Arnold, Y.; Wrona, E.A.; Vunjak-Novakovic, G. Natural cardiac extracellular matrix hydrogels for cultivation of human stem cell-derived cardiomyocytes. Methods in molecular biology (Clifton, N.J.) 2014, 1181, 69-81, doi:10.1007/978-1-4939-1047-2_7.
81. Fercana, G.R.; Yerneni, S.; Billaud, M.; Hill, J.C.; VanRyzin, P.; Richards, T.D.; Sicari, B.M.; Johnson, S.A.; Badylak, S.F.; Campbell, P.G.; et al. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor. Biomaterials 2017, 123, 142-154, doi:10.1016/j.biomaterials.2017.01.037.
82. Giobbe, G.G.; Crowley, C.; Luni, C.; Campinoti, S.; Khedr, M.; Kretzschmar, K.; De Santis, M.M.; Zambaiti, E.; Michielin, F.; Meran, L.; et al. Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nature Communications 2019, 10, 5658, doi:10.1038/s41467-019-13605-4.
83. Gratzer, P.F.; Harrison, R.D.; Woods, T. Matrix Alteration and Not Residual Sodium Dodecyl Sulfate Cytotoxicity Affects the Cellular Repopulation of a Decellularized Matrix. Tissue Engineering 2006, 12, 2975-2983, doi:10.1089/ten.2006.12.2975.
84. Gr, T.S.P.; Hi.; Zaman, N.T.; Alamelu, B.; Dhamankar, V.; Chu, C.; Perotta, E.; Kadiyala, I. Mechanical Characterization of Extracellular Matrix Hydrogels: Comparison of Properties Measured by Rheometer and Texture Analyzer. 2018.
85. Massensini, A.R.; Ghuman, H.; Saldin, L.T.; Medberry, C.J.; Keane, T.J.; Nicholls, F.J.; Velankar, S.S.; Badylak, S.F.; Modo, M. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Acta biomaterialia 2015, 27, 116-130, doi:10.1016/j.actbio.2015.08.040.
86. Sawkins, M.J.; Bowen, W.; Dhadda, P.; Markides, H.; Sidney, L.E.; Taylor, A.J.; Rose, F.R.A.J.; Badylak, S.F.; Shakesheff, K.M.; White, L.J. Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta biomaterialia 2013, 9, 7865-7873, doi:https://doi.org/10.1016/j.actbio.2013.04.029.
87. Fu, Y.; Fan, X.; Tian, C.; Luo, J.; Zhang, Y.; Deng, L.; Qin, T.; Lv, Q. Decellularization of porcine skeletal muscle extracellular matrix for the formulation of a matrix hydrogel: a preliminary study. J Cell Mol Med 2016, 20, 740-749, doi:10.1111/jcmm.12776.
88. Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: Materials in Medicine 2019, 30, 115, doi:10.1007/s10856-019-6318-7.
89. Laurila, P.; Leivo, I. Basement membrane and interstitial matrix components form separate matrices in heterokaryons of PYS-2 cells and fibroblasts. Journal of Cell Science 1993, 104, 59.
90. Matrix, Extracellular and Interstitial. In Reviews in Cell Biology and Molecular Medicine.
91. Pokrywczyńska, M.; Gubanska, I.; Drewa, G.; Drewa, T. Application of Bladder Acellular Matrix in Urinary Bladder Regeneration: The State of the Art and Future Directions. BioMed Research International 2014, doi:10.1155/2015/613439.
92. Bouhout, S.; Rousseau, A.; Chabaud, S.; Morissette, A.; Bolduc, S. Potential of Different Tissue Engineering Strategies in the Bladder Reconstruction. 2013.
93. Grounds, M.D. Complexity of Extracellular Matrix and Skeletal Muscle Regeneration. In Skeletal Muscle Repair and Regeneration, Schiaffino, S., Partridge, T., Eds.; Springer Netherlands: Dordrecht, 2008; pp. 269-302.
94. Kao, C.-Y.; Nguyen, H.-Q.-D.; Weng, Y.-C. Characterization of Porcine Urinary Bladder Matrix Hydrogels from Sodium Dodecyl Sulfate Decellularization Method. 2020, 12, 3007.
95. Ghuman, H.; Massensini, A.R.; Donnelly, J.; Kim, S.M.; Medberry, C.J.; Badylak, S.F.; Modo, M. ECM hydrogel for the treatment of stroke: Characterization of the host cell infiltrate. Biomaterials 2016, 91, 166-181, doi:10.1016/j.biomaterials.2016.03.014.
96. Loneker, A.E.; Faulk, D.M.; Hussey, G.S.; D'Amore, A.; Badylak, S.F. Solubilized liver extracellular matrix maintains primary rat hepatocyte phenotype in-vitro. Journal of biomedical materials research. Part A 2016, 104, 957-965, doi:10.1002/jbm.a.35636.
97. Allbritton-King, J.D.; Kimicata, M.; Fisher, J.P. Incorporating a structural extracellular matrix gradient into a porcine urinary bladder matrix-based hydrogel dermal scaffold. Journal of Biomedical Materials Research Part A 2021, n/a, doi:https://doi.org/10.1002/jbm.a.37181.
98. Faust, A.; Kandakatla, A.; van der Merwe, Y.; Ren, T.; Huleihel, L.; Hussey, G.; Naranjo, J.D.; Johnson, S.; Badylak, S.; Steketee, M. Urinary bladder extracellular matrix hydrogels and matrix-bound vesicles differentially regulate central nervous system neuron viability and axon growth and branching. J Biomater Appl 2017, 31, 1277-1295, doi:10.1177/0885328217698062.
99. Aitken, K.J.; Bägli, D.J. The bladder extracellular matrix. Part I: architecture, development and disease. Nature reviews. Urology 2009, 6, 596-611, doi:10.1038/nrurol.2009.201.
100. Brown, B.N.; Buckenmeyer, M.J.; Prest, T.A. Preparation of Decellularized Biological Scaffolds for 3D Cell Culture. Methods in molecular biology (Clifton, N.J.) 2017, 1612, 15-27, doi:10.1007/978-1-4939-7021-6_2.
101. Liu, X.; Gao, Y.; Long, X.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ogura, T.; Wang, D.O.; Ikejima, T. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-κB p65 activation. Food & function 2020, 11, 328-338, doi:10.1039/c9fo01346f.
102. Arends, F.; Nowald, C.; Pflieger, K.; Boettcher, K.; Zahler, S.; Lieleg, O. The biophysical properties of Basal lamina gels depend on the biochemical composition of the gel. PLoS One 2015, 10, e0118090-e0118090, doi:10.1371/journal.pone.0118090.
103. Aurora, A.; McCarron, J.; Iannotti, J.P.; Derwin, K. Commercially available extracellular matrix materials for rotator cuff repairs: state of the art and future trends. Journal of shoulder and elbow surgery 2007, 16, S171-178, doi:10.1016/j.jse.2007.03.008.
104. Yurchenco, P.D. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harbor perspectives in biology 2011, 3, doi:10.1101/cshperspect.a004911.
105. Oegema, T.R.; Laidlaw, J.; Hascall, V.C.; Dziewiatkowski, D.D. The effect of proteoglycans on the formation of fibrils from collagen solutions. Archives of Biochemistry and Biophysics 1975, 170, 698-709, doi:https://doi.org/10.1016/0003-9861(75)90167-8.
106. Yan, C.; Altunbas, A.; Yucel, T.; Nagarkar, R.P.; Schneider, J.P.; Pochan, D.J. Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable β-hairpin peptide hydrogels. Soft matter 2010, 6, 5143-5156, doi:10.1039/c0sm00642d.
107. Bual, R.P.; Ijima, H. Intact extracellular matrix component promotes maintenance of liver-specific functions and larger aggregates formation of primary rat hepatocytes. Regenerative Therapy 2019, 11, 258-268, doi:https://doi.org/10.1016/j.reth.2019.08.006.
108. Lutolf, M.P.; Hubbell, J.A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnology 2005, 23, 47-55, doi:10.1038/nbt1055.
109. Alom, N.; Peto, H.; Kirkham, G.R.; Shakesheff, K.M.; White, L.J. Bone extracellular matrix hydrogel enhances osteogenic differentiation of C2C12 myoblasts and mouse primary calvarial cells. J Biomed Mater Res B Appl Biomater 2018, 106, 900-908, doi:10.1002/jbm.b.33894.
110. DeQuach, J.A.; Mezzano, V.; Miglani, A.; Lange, S.; Keller, G.M.; Sheikh, F.; Christman, K.L. Simple and high yielding method for preparing tissue specific extracellular matrix coatings for cell culture. PLoS One 2010, 5, e13039-e13039, doi:10.1371/journal.pone.0013039.
111. D'Agostino, M.; Torcinaro, A.; Madaro, L.; Marchetti, L.; Sileno, S.; Beji, S.; Salis, C.; Proietti, D.; Imeneo, G.; M, C.C.; et al. Role of miR-200c in Myogenic Differentiation Impairment via p66Shc: Implication in Skeletal Muscle Regeneration of Dystrophic mdx Mice. Oxidative medicine and cellular longevity 2018, 2018, 4814696, doi:10.1155/2018/4814696.
112. Willkomm, L.; Schubert, S.; Jung, R.; Elsen, M.; Borde, J.; Gehlert, S.; Suhr, F.; Bloch, W. Lactate regulates myogenesis in C2C12 myoblasts in vitro. Stem Cell Research 2014, 12, 742-753, doi:https://doi.org/10.1016/j.scr.2014.03.004.
113. Gillies, A.R.; Lieber, R.L. Structure and function of the skeletal muscle extracellular matrix. 2011, 44, 318-331, doi:https://doi.org/10.1002/mus.22094.
114. Chaturvedi, V.; Dye, D.E.; Kinnear, B.F.; van Kuppevelt, T.H.; Grounds, M.D.; Coombe, D.R. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System. PLoS One 2015, 10, e0127675-e0127675, doi:10.1371/journal.pone.0127675.
115. Soundharrajan, I.; Kim, D.H.; Kuppusamy, P.; Choi, K.C. Modulation of osteogenic and myogenic differentiation by a phytoestrogen formononetin via p38MAPK-dependent JAK-STAT and Smad-1/5/8 signaling pathways in mouse myogenic progenitor cells. Scientific Reports 2019, 9, 9307, doi:10.1038/s41598-019-45793-w.
116. Chen, J.; Shi, Z.-D.; Ji, X.; Morales, J.; Zhang, J.; Kaur, N.; Wang, S. Enhanced osteogenesis of human mesenchymal stem cells by periodic heat shock in self-assembling peptide hydrogel. Tissue Eng Part A 2013, 19, 716-728, doi:10.1089/ten.TEA.2012.0070.
117. Mahendiratta, S.; Bansal, S.; Sarma, P.; Kumar, H.; Choudhary, G.; Kumar, S.; Prakash, A.; Sehgal, R.; Medhi, B. Stem cell therapy in COVID-19: Pooled evidence from SARS-CoV-2, SARS-CoV, MERS-CoV and ARDS: A systematic review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2021, 137, 111300, doi:10.1016/j.biopha.2021.111300.
118. Zayed, M.; Iohara, K. Immunomodulation and Regeneration Properties of Dental Pulp Stem Cells: A Potential Therapy to Treat Coronavirus Disease 2019. Cell Transplant 2020, 29, 963689720952089-963689720952089, doi:10.1177/0963689720952089.
119. Yao, D.; Ye, H.; Huo, Z.; Wu, L.; Wei, S. Mesenchymal stem cell research progress for the treatment of COVID-19. Journal of International Medical Research 2020, 48, 0300060520955063, doi:10.1177/0300060520955063.
120. Khatri, M.; Richardson, L.A.; Meulia, T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther 2018, 9, 17, doi:10.1186/s13287-018-0774-8.
121. Fujita, Y.; Kadota, T.; Araya, J.; Ochiya, T.; Kuwano, K. Clinical Application of Mesenchymal Stem Cell-Derived Extracellular Vesicle-Based Therapeutics for Inflammatory Lung Diseases. Journal of clinical medicine 2018, 7, doi:10.3390/jcm7100355.
122. Wang, L.; Li, Y.; Xu, M.; Deng, Z.; Zhao, Y.; Yang, M.; Liu, Y.; Yuan, R.; Sun, Y.; Zhang, H.; et al. Regulation of Inflammatory Cytokine Storms by Mesenchymal Stem Cells. 2021, 12, doi:10.3389/fimmu.2021.726909.
123. Chen, Y.-T.; Miao, K.; Zhou, L.; Xiong, W.-N. Stem cell therapy for chronic obstructive pulmonary disease. Chinese Medical Journal 2021, 134.
124. Armitage, J.; Tan, D.B.A.; Troedson, R.; Young, P.; Lam, K.V.; Shaw, K.; Sturm, M.; Weiss, D.J.; Moodley, Y.P. Mesenchymal stromal cell infusion modulates systemic immunological responses in stable COPD patients: a phase I pilot study. The European respiratory journal 2018, 51, doi:10.1183/13993003.02369-2017.
125. Karaoz, E.; Kalemci, S.; Ece, F. Improving effects of mesenchymal stem cells on symptoms of chronic obstructive pulmonary disease. Bratislavske lekarske listy 2020, 121, 188-191, doi:10.4149/bll_2020_028.
126. de Oliveira, H.G.; Cruz, F.F.; Antunes, M.A.; de Macedo Neto, A.V.; Oliveira, G.A.; Svartman, F.M.; Borgonovo, T.; Rebelatto, C.L.; Weiss, D.J.; Brofman, P.R.; et al. Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial. Stem cells translational medicine 2017, 6, 962-969, doi:10.1002/sctm.16-0315.
127. Brown, B.N.; Londono, R.; Tottey, S.; Zhang, L.; Kukla, K.A.; Wolf, M.T.; Daly, K.A.; Reing, J.E.; Badylak, S.F. Macrophage phenotype as a predictor of constructive remodeling following the implantation of biologically derived surgical mesh materials. Acta biomaterialia 2012, 8, 978-987, doi:10.1016/j.actbio.2011.11.031.
128. Kao, C.-Y.; Nguyen, H.-Q.-D.; Weng, Y.-C.; Hung, Y.-H.; Lo, C.-M. Evaluating the Effect of Tissue Selection on the Characteristics of Extracellular Matrix Hydrogels from Decellularized Porcine Bladders. 2021, 11, 5820.
129. Hoshiba, T.; Chen, G.; Endo, C.; Maruyama, H.; Wakui, M.; Nemoto, E.; Kawazoe, N.; Tanaka, M. Decellularized Extracellular Matrix as an In Vitro Model to Study the Comprehensive Roles of the ECM in Stem Cell Differentiation. Stem Cells Int 2016, 2016, 6397820, doi:10.1155/2016/6397820.
130. Gordon, S. The macrophage: past, present and future. European journal of immunology 2007, 37 Suppl 1, S9-17, doi:10.1002/eji.200737638.
131. Musial, C.; Gorska-Ponikowska, M. Medical progress: Stem cells as a new therapeutic strategy for COVID-19. Stem Cell Research 2021, 52, 102239, doi:https://doi.org/10.1016/j.scr.2021.102239.
132. Huleihel, L.; Dziki, J.L.; Bartolacci, J.G.; Rausch, T.; Scarritt, M.E.; Cramer, M.C.; Vorobyov, T.; LoPresti, S.T.; Swineheart, I.T.; White, L.J.; et al. Macrophage phenotype in response to ECM bioscaffolds. Seminars in immunology 2017, 29, 2-13, doi:10.1016/j.smim.2017.04.004.
133. Taraballi, F.; Sushnitha, M.; Tsao, C.; Bauza, G.; Liverani, C.; Shi, A.; Tasciotti, E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Advanced healthcare materials 2018, 7, e1800490, doi:10.1002/adhm.201800490.
134. Kang, I.; Chang, M.Y.; Wight, T.N.; Frevert, C.W. Proteoglycans as Immunomodulators of the Innate Immune Response to Lung Infection. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 2018, 66, 241-259, doi:10.1369/0022155417751880.
135. Lan, X.; Sun, Z.; Chu, C.; Boltze, J.; Li, S. Dental Pulp Stem Cells: An Attractive Alternative for Cell Therapy in Ischemic Stroke. 2019, 10, doi:10.3389/fneur.2019.00824.
136. Barry, F.P.; Murphy, J.M. Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry & cell biology 2004, 36, 568-584, doi:10.1016/j.biocel.2003.11.001.
137. Monsel, A.; Zhu, Y.-G.; Gennai, S.; Hao, Q.; Liu, J.; Lee, J.W. Cell-based therapy for acute organ injury: preclinical evidence and ongoing clinical trials using mesenchymal stem cells. Anesthesiology 2014, 121, 1099-1121, doi:10.1097/ALN.0000000000000446.
138. Németh, K.; Leelahavanichkul, A.; Yuen, P.S.; Mayer, B.; Parmelee, A.; Doi, K.; Robey, P.G.; Leelahavanichkul, K.; Koller, B.H.; Brown, J.M.; et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009, 15, 42-49, doi:10.1038/nm.1905.
139. Pedrazza, L.; Cubillos-Rojas, M.; de Mesquita, F.C.; Luft, C.; Cunha, A.A.; Rosa, J.L.; de Oliveira, J.R. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway. Stem Cell Res Ther 2017, 8, 289, doi:10.1186/s13287-017-0734-8.
140. Li, Y.; Gao, X.; Wang, J. Human adipose-derived mesenchymal stem cell-conditioned media suppresses inflammatory bone loss in a lipopolysaccharide-induced murine model. Exp Ther Med 2018, 15, 1839-1846, doi:10.3892/etm.2017.5606.
141. Chanteux, H.; Guisset, A.C.; Pilette, C.; Sibille, Y. LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respiratory Research 2007, 8, 71, doi:10.1186/1465-9921-8-71.
142. Manni, M.L.; Czajka, C.A.; Oury, T.D.; Gilbert, T.W. Extracellular matrix powder protects against bleomycin-induced pulmonary fibrosis. Tissue Eng Part A 2011, 17, 2795-2804, doi:10.1089/ten.tea.2011.0023.
143. Vracko, R. Basal lamina scaffold-anatomy and significance for maintenance of orderly tissue structure. Am J Pathol 1974, 77, 314-346.
144. Ionescu, L.; Byrne, R.N.; van Haaften, T.; Vadivel, A.; Alphonse, R.S.; Rey-Parra, G.J.; Weissmann, G.; Hall, A.; Eaton, F.; Thébaud, B. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American journal of physiology. Lung cellular and molecular physiology 2012, 303, L967-L977, doi:10.1152/ajplung.00144.2011.
145. Saldaña, L.; Bensiamar, F.; Vallés, G.; Mancebo, F.J.; García-Rey, E.; Vilaboa, N. Immunoregulatory potential of mesenchymal stem cells following activation by macrophage-derived soluble factors. Stem Cell Res Ther 2019, 10, 58, doi:10.1186/s13287-019-1156-6.
146. Wu, J.; Ravikumar, P.; Nguyen, K.T.; Hsia, C.C.; Hong, Y. Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS One 2017, 12, e0171165, doi:10.1371/journal.pone.0171165.
147. Zhou, J.; Wu, P.; Sun, H.; Zhou, H.; Zhang, Y.; Xiao, Z. Lung tissue extracellular matrix-derived hydrogels protect against radiation-induced lung injury by suppressing epithelial-mesenchymal transition. Journal of cellular physiology 2020, 235, 2377-2388, doi:10.1002/jcp.29143.

QR CODE