簡易檢索 / 詳目顯示

研究生: 蔡宗曄
Tsung-Yeh Tsai
論文名稱: 熱處理參數與火花電漿燒結對釤摻雜二氧化鈰奈米顆粒之缺陷結構影響
Effect of Heat Treatment and Spark Plasma Sinter on Defect Structure of Sm doped Cerium Oxide
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳良益
Liang-Yih Chen
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 釤摻雜二氧化鈰熱處理火花電漿燒結X光吸收光譜
外文關鍵詞: Sm doped CeO2, annealing, SPS, XAS
相關次數: 點閱:233下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為探討熱處理及燒結過程對釤摻雜二氧化鈰奈米顆粒中的缺陷結構,包括分佈、種類、數量的影響,本實驗利用沉澱法製備摻雜不同Sm含量(0%, 11%, 15%, 20%)之二氧化鈰奈米顆粒,在不同氣氛下進行退火處理,再將樣品進行火花電漿燒結,所製得的樣品利用X光繞射儀(XRD)、穿透式電子顯微鏡(TEM)、X光吸收光譜儀(X-ray Absorption Spectroscopy, XAS)及拉曼散射分析儀(Raman scattering Spectrometer)進行樣品結構及各元素價態的分析,並利用管型爐配合阻抗分析儀量測塊材之之導電率。
研究結果顯示:當Sm摻雜量高於11%時,二氧化鈰會形成核殼結構,表面為一層富含缺陷的表層。在氧化氣氛下進行熱處理,二氧化鈰仍維持核殼結構,但樣品內的Ce3+數量減少;在還原氣氛下進行熱處理,樣品內的缺陷數量大幅增加,特別是在摻雜Sm的樣品,且二氧化鈰內的Ce3+傾向於均勻分布在二氧化鈰顆粒內。經熱處理的樣品再進行火花電漿燒結,結果發現火花電漿燒結將使二氧化鈰顆粒產生還原反應,此現象在經過還原處理的樣品最為明顯;而火花電漿燒結對顆粒尺寸影響不大,符合預期。但由於目前所製備之奈米塊材孔隙率仍相當高,因此所測得的導電率較以傳統燒結法製備之塊材差,此部分有待後續做進一步的參數調整。


In order to unravel the effect of heat treatment and sintering process on the defect structures of Sm doped CeO2 nanoparticles (NPs), in this study, Ce1-xSmxO2 NPs, where x = 0, 0.11, 0.15, and 0.2, were prepared by co-precipitation method. The samples were annealed in different atmosphere (O2/Ar+H2) at 500℃ for 2 hours and then sintered by Spark Plasma Sintering. The crystal structure as well as valance state were investigated by utilizing X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), X-Ray Absorption Spectroscopy (XAS) and Raman Scattering Spectrometer.
It is demonstrated that a defect-rich layer formed at surface of CeO2 NPs as doping level is higher than 11%. The core-shell like structure is remained after annealing in O2. On the other hand, the amount of Ce3+ is enhanced significantly after annealing in Ar+H2, in particular of Sm doped ones. In addition, the distribution of defects is more homogeneous in the reduced NPs. In samples after further sintered by using SPS, it is found that SPS process results in the reduction of NPs, especially of NPs with high concentration of defects. The grain sizes of samples after SPS are small, however, the porosity is much high. The later one was supposed to be related to the poor conductivity as compared to conventional sintered CeO2 bulks.

摘要------------------------------------------------------------------------------2 Abstract--------------------------------------------------------------------------3 目錄------------------------------------------------------------------------------4 圖索引---------------------------------------------------------------------------6 第一章 緒論--------------------------------------------------------------------9 1.1前言--------------------------------------------------------------------------9 1.2 研究背景--------------------------------------------------------------------10 1.3 研究動機及目的--------------------------------------------------------12 第二章 文獻回顧與理論介紹---------------------------------------------14 2.1 燃料電池簡介-----------------------------------------------------------15 2.1.1 燃料電池的歷史---------------------------------------------------14 2.1.2 燃料電池的特點---------------------------------------------------15 2.1.3 燃料電池的分類以及應用範圍---------------------------------16 2.1.4 固態氧化物燃料電池的優點------------------------------------17 2.1.5 SOFC的基本原理--------------------------------------------------18 2.1.6 SOFC的電解質基本傳導機制-----------------------------------19 2.1.7 電解質摻雜原理----------------------------------------------------20 2.1.8 雙交換機制----------------------------------------------------------24 2.2 二氧化鈰的基本性質---------------------------------------------------25 2.2.1 物理性質及晶體結構--------------------------------------------26 2.2.2 光學性質-----------------------------------------------------------26 2.2.3 化學性質-----------------------------------------------------------26 2.3 二氧化鈰的製備方法---------------------------------------------------28 2.3.1 物理法--------------------------------------------------------------28 2.3.2 化學法--------------------------------------------------------------29 2.4 利用沉澱法製造二氧化鈰奈米顆粒---------------------------------32 2.5 二氧化鈰的應用---------------------------------------------------------36 2.6 火花電漿燒結 (SPS) ---------------------------------------------------37 2.6.1 火花電漿燒結概要------------------------------------------------38 2.6.2 火花電漿燒結概要系統------------------------------------------39 2.6.3 D.C 脈衝電流的供應效應----------------------------------------39 2.6.4 火花電漿燒結機制-------------------------------------------------39 第三章 實驗方法--------------------------------------------------------------42 3.1 藥品及氣體----------------------------------------------------------------42 3.2 二氧化鈰奈米顆粒的製備----------------------------------------------43 3.2.1 未摻雜之二氧化鈰奈米顆粒-------------------------------------43 3.2.2 摻雜釤之二氧化鈰奈米顆粒-------------------------------------44 3.3 二氧化鈰奈米顆粒之熱處理--------------------------------------------45 3.4 分析方法及樣品前處理--------------------------------------------------46 3.4.1 XRD分析-------------------------------------------------------------47 3.4.2 TEM分析-------------------------------------------------------------48 3.4.3 XAS 分析-------------------------------------------------------------49 3.4.4 Raman分析-----------------------------------------------------------52 3.4.5 導電率分析-----------------------------------------------------------53 第四章結果與討論--------------------------------------------------------------50 4.1釤摻雜對二氧化鈰奈米顆粒之缺陷結構影響------------------------54 4.1.1 XRD分析及TEM分析--------------------------------------------54 4.1.2 XAS 分析-------------------------------------------------------------55 4.1.2.1 Ce L3-edge---------------------------------------------------55 4.1.2.2 Ce M4,5-edge-------------------------------------------------57 4.1.2.3 O K-edge-----------------------------------------------------58 4.1.2.4 Sm M4,5-edge------------------------------------------------59 4.1.3 Raman 分析----------------------------------------------------------60 4.2 熱處裡對釤摻雜二氧化鈰奈米顆粒之缺陷結構影響--------------62 4.2.1 XRD分析及TEM分析--------------------------------------------62 4.2.2 XAS分析--------------------------------------------------------------64 4.2.2.1 Ce L3-edge---------------------------------------------------64 4.2.2.2 Ce M4,5-edge-------------------------------------------------66 4.2.2.3 Sm 4,5-edge---------------------------------------------------67 4.2.2.4 Sm L3-edge --------------------------------------------------68 4.2.3 Raman 分析----------------------------------------------------------69 4.3 火花電漿燒結對釤摻雜二氧化鈰奈米顆粒之缺陷結構影響-----71 4.3.1 XRD分析及TEM分析--------------------------------------------71 4.3.2 XAS分析-------------------------------------------------------------73 4.3.2.1 Ce L3-edge--------------------------------------------------74 4.3.2.2 Ce M4,5-edge------------------------------------------------75 4.3.2.4 Sm M4,5-edge-----------------------------------------------76 4.3.3 Raman 分析---------------------------------------------------------77 4.3.4 導電性分析---------------------------------------------------------78 第五章 結論-------------------------------------------------------------------80 第六章 未來展望-------------------------------------------------------------81 參考文獻-----------------------------------------------------------------------82

[1] B. C. H. Steele ed. T. Takahashi.(World scientific, Singapore, 1989).
[2] Inaba Hideaki , Tagawa Hiroaki. Solid State Ionics 83(1996) 1- 16.
[3] M. Mogensen.; T. Lindegaard,; U. R, Hansen.; G.,J,Mogensen. Electrochem.Soc.,141,2112(1994).
[4] Bin Zhu.INTERNATIONAL. Journal of energy research 2009;33:1126–1137
[5] 黃瑞庭. 南台科技大學化學工程與材枓工程系研究所碩士論文 (2009)
[6] M. Mogensen.; T. Lindegaard.; U. R, Hansen.; G, Mogensen. Journal of Electrochem. Soc., 141,2112(1994).
[7] C. Zener. Physical Review 81 (3) (1951) 440
[8] 蔡銘宮. 國立中山大學物理學系研究所碩士論文 (2008).
[9] N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B.Johansson, B.I. Lundqvist. ElectronicPhysical Review B 64 (11) (2001) 115108.
[10] S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri. Materials Chemistry and Physics 115 (1) (2009) 423.
[11] 張宏毅. 國立成功大學化學工程學系博士論文 (2005).
[12] P. Patsalas ; S. Logothetidis ; L. Sygellou ; S. Kennou. Physical Review B 68 (3) (2003) 035104.
[13] M. Sugiura.Catalysis Surveys from Asia 7 (1) (2003) 77.
[14] Z.L. Yinglin Liu ; Azizan Aziz and Judith MacManus-Driscoll. Journal of Physics: Condensed Matter 20 (2008) 165201.
[15] G.L. Xiaobo Chen ; Yiguo Su ; Xiaoqing Qiu ; Liping Li and Zhigang Zou. Nanotechnology 20 (2009) 115606.
[16] V. Boffa ; T. Petrisor ; S. Ceresara ; L. Ciontea, F. Fabbri ; P. Scardi
Physica C: Superconductivity 312 (3–4) (1999) 202.
[17] L. Wu ; H.J. Wiesmann ; A.R. Moodenbaugh ; R.F. Klie ; Y. Zhu ; D.O. Welch ; M. Suenaga. Physical Review B 69 (12) (2004) 125415.
[18] J. Liu ; L. Wang ; H. Wu ; L. Mo ; H. Lou ; X. Zheng. Reaction Kinetics and Catalysis Letters 98 (2) (2009) 311.
[19] D.-S. Bae ; B. Lim ; B.-I. Kim ; K.-S. Han. Materials Letters 56 (4) (2002) 610.
[20] K.J.L. Srivatsan Sathyamurthy ; Reza T Dabestani and M Parans Paranthaman. Nanotechnology 16 (2005) 1960.
[21] M. Li ; S. Ge ; W. Qiao ; L. Zhang ; Y. Zuo ; S. Yan.Applied Physics Letters 94 (15) (2009) 152511.
[22] S. Gopalan ; S.C. Singhal. Scripta Materialia 42 (10) (2000) 993.
[23] 連昭晴.國立成功大學化學工程學系 (2004).
[24] N. Laosiripojana, S. Assabumrungrat. Applied Catalysis B: Environmental 66 (1–2) (2006) 29.
[25] 張宏毅. 國立成功大學化學工程學系博士論文 (2005).
[26] X.-D. Zhou ; W. Huebner ; H.U. Anderson. Applied Physics Letters 80 (20) (2002) 3814.
[27] P.-L. Chen ; I.W. Chen. Journal of the American Ceramic Society 76 (6) (1993) 1577.
[28] J.-G. Li ; T. Ikegami ; Y. Wang ;T. Mori. Journal of the American Ceramic Society 85 (9) (2002) 2376.
[29] S. Tsunekawa ; R. Sivamohan ; S. Ito ; A. Kasuya, T. Fukuda. Nanostructured Materials 11 (1) (1999) 141.
[30] J. L. G. Fierro ; S. Mendioroz ; A.M. Olivan. Journal of Colloid and Interface Science 107 (1) (1985) 60.
[31] 李秋煌. 科學發展 370 (2003) 29.
[32] T. Morimoto ; H. Tomonaga ; A. Mitani. Thin Solid Films 351 (1–2) (1999) 61.
[33] R. Li ; S. Yabe ; M. Yamashita ; S. Momose ; S. Yoshida ; S. Yin ; T. Sato. Solid State Ionics 151 (1–4) (2002) 235.
[34] S. Yabe ; T. Sato. Journal of Solid State Chemistry 171 (1–2) 7-11.
[35] P.A. Atanasov ; T. Okato ; R.I. Tomov ; M. Obara. Thin Solid Films 453–454 (0) (2004) 150.
[36] M. Shirakawa ; J. Unno ; K. Aizawa ; M. Kusunoki ; M. Mukaida ; S. Ohshima. Physica C: Superconductivity 392–396, Part 2 (0) (2003) 1346.
[37] N. Izu ; W. Shin ; N. Murayama. Sensors and Actuators B: Chemical 93 (1–3) (2003) 449.
[38] N.M. Sammes ; Z. Cai. Solid State Ionics 100 (1–2) (1997) 39.
[39] O.A. Marina ; C. Bagger ; S. Primdahl ; M. Mogensen. Solid State Ionics 123 (1–4) (1999) 199.
[40 ] J.H. Blank ; J. Beckers ; P.F. Collignon ; G. Rothenberg. ChemPhysChem 8 (17) (2007) 2490.
[41] R. Craciun. Solid State Ionics 110 (1–2) (1998) 83.
[42] P. Nachimuthu ; W.-C. Shih ; R.-S. Liu ; L.-Y. Jang ; J.-M. Chen. Journal of Solid State Chemistry 149 (2) (2000) 408.
[43] S.G.a.M. Reichling. Nanotechnology 18 (2007) 044024.
[44] Z. Yang ; Q. Wang ;S. Wei ; D. Ma ; Q. Sun. The Journal of Physical Chemistry C 114 (35) (2010) 14891.
[45] R. Craciun. Solid State Ionics 110 (1–2) (1998) 83.
[46] Biswajit Choudhury and Amarjyoti Choudhury. Current Applied Physics, Vol. 13, pp. 217-223 (2013).
[47] Y. Xin ; Y. Qi and X. Ma. Materials Letters, Vol. 64, pp. 2659 (2010).
[48] V. Lair a ; L.S. ˇZivkovi’ca,b ; O. Lupana,c ; A. Ringuedea ;V. Lair et al. Electrochimica Acta 56 (2011) 4638–4644
[49] Marcin R. Kosinski ;Richard T. Baker. Journal of Powder Sources 196 (2011) 2498-2512
[49] Tuba Karaca ; Tuba Gu‥rkaynak Altınc﹐ekic﹐ ; M. Faruk O‥ksu‥zo‥mer. Ceramics International 36 (2010) 1101–1107

QR CODE