簡易檢索 / 詳目顯示

研究生: 楊玉雪
Yu-Shiue Yang
論文名稱: 微脂粒與Triton非離子型界面活性劑之交互作用
Interactions between Liposomes and Nonionic Surfactants
指導教授: 陳崇賢
Chorng-Shyan Chern
口試委員: 李振綱
Cheng-Kang Lee
邱信程
Hsin-Cheng Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 微脂粒非離子型界面活性劑
外文關鍵詞: nonionic surfactant, liposomes
相關次數: 點閱:309下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗是利用超音波震盪法製備含有30 mole %的微脂粒並加入具有不同親水基鏈長的界面活性劑來探討界面活性劑與微脂粒之間的交互作用。藉由添加不同濃度之界面活性劑Triton X-100、Triton X-102、Triton X-165來探討界面活性劑由嵌入微脂粒脂雙層到瓦解微脂粒脂雙層的機制。首先,我們利用安定比來了解微脂粒在嵌入階段以及微脂粒脂雙層被瓦解的程序有何不同?且由UV-visible吸收值隨時間之變化情形得知不同的界面活性劑對微脂粒有不同的溶解能力。其次,我們以界面活性劑在微脂粒脂雙層中和水相中的分佈係數(K值)來探討Triton X-100、Triton X-102、Triton X-165嵌入微脂粒脂雙層中的情形,也了解不同界面活性劑對同一種微脂粒的嵌入情形也有所不同。最後,我們則使用1H-NMR來進一步了解界面活性劑嵌入微脂粒脂雙層以及微脂粒脂雙層漸漸被瓦解的機制。另外我們還有由Triton X-100、Triton X-102、Triton X-165的CMC值來探討三者之間的特性。


Liposomes comprising Egg PC and cholesterol (EPC : CH =7 : 3 ) were prepared by the sonication method. The objective of this work was to investigate the interactions between nonionic surfactants with different number of EO units of the hydrophilic part and liposomes. By adding different surfactants (Triton X-100, Triton X-102 or Triton X-165) to liposomes containing cholesterol, we studied the mechanism of inserting surfactants molecules into the bilayer of liposomes. First, we used the W values obtained from the dissolution kinetics experiments to study how the surfactant molecules were incorporated into the bilayer. Second, we used the K values (partition coefficient) to describe the portioning of surfactant molecules between the continuous aqueous phase and the bilayer. The conclusions obtained from the above experiments were further supported by the 1H-NMR spectra.

中文摘要i 英文摘要ii 致謝iii 目錄iv 圖目錄vii 表目錄x 第一章 緒論1 1.1 研究背景及目的1 1.2 研究內容簡介2 第二章 文獻回顧3 2.1 微脂粒的簡介3 2.2 脂質分子的簡介3 2.2.1 脂質分子的結晶結構4 2.2.2 脂質分子的水合效應4 2.2.3 自身結合效應4 2.3 微脂粒的形成及其結構5 2.4 混合微胞的形成(formation of mixed micelle)6 2.5 混合微胞的結構(mixed micelle sturcture)8 2.6 界面活性劑簡介8 2.7 微脂粒與膽固醇的關係9 2.8 微脂粒與界面活性劑的關係.10 第三章 實驗藥品、儀器及實驗方法16 3.1 實驗藥品16 3.2 實驗儀器與設備17 3.3 實驗方法18 3.3.1 微脂粒的製備18 3.3.2 以不同濃度界面活性劑嵌入微脂粒之動力學實驗19 3.3.3 離心實驗19 3.3.4 以懸垂液滴影像數位化測量儀測量表面張力並計算出離心之上層液中界面活性劑濃度20 3.3.5 以1H-NMR實驗探討界面活性劑嵌入微脂粒的機制20 第四章 結果討論21 4.1 三種不同界面活性劑之特性21 4.2 以不同濃度界面活性劑嵌入微脂粒之動力學實驗22 4.2.1 以UV-visible測量添加界面活性劑之微脂粒溶液吸收值對隨時間之變化23 4.2.2 安定比與濃度之關係24 4.3 以懸垂液滴影像數位化測量儀測量表面張力並計算出離心之上層液中界面活性劑濃度26 4.4 以1H-NMR實驗探討界面活性劑嵌入微脂粒的機制31 第五章 結論71 5.1 結論71 5.2 建議72 第六章 參考文獻73 圖2-1 脂質分子的結晶排列圖14 圖2-2 甘油與抱合糖脂醇的化學結構圖14 圖2-3 表面張力v.s 界面活性劑濃度圖15 圖2-4 混合微胞形成之示意圖15 圖4-1 Triton X-100之CMC圖38 圖4-2 Triton X-102之CMC圖38 圖4-3 Triton X-165之CMC圖39 圖4-4 (a) 0.6mM磷脂質與不同濃度Triton X-100之吸收值隨時間變化圖,T= 25℃,λ=350 nm39 圖4-4 (b) 0.6mM磷脂質與不同濃度Triton X-102之吸收值隨時間變化圖,T= 25℃,λ=350 nm40 圖4-4 (c) 0.6mM磷脂質與不同濃度Triton X-165之吸收值隨時間變化圖,T= 25℃,λ=350 nm40 圖4-5 同濃度(2 mM)下三種不同界面活性劑的吸收值對時間之關係圖41 圖4-6 (a) 0.6 mM磷脂質與Triton X-100之log W對logC圖41 圖4-6 (b) 0.6 mM磷脂質與Triton X-102之log W對logC圖42 圖4-6 (c) 0.6 mM磷脂質與Triton X-165之log W對logC圖42 圖4-7 脂雙層嵌入量與界面活性劑Triton X-100濃度之關係圖43 圖4-8 脂雙層嵌入量與界面活性劑Triton X-102濃度之關係圖43 圖4-9 脂雙層嵌入量與界面活性劑Triton X-165濃度之關係圖44 圖4-10 (a) Triton X-100之SPL對(PL+C+SPL)Sw關係44 圖4-10 (b) Triton X-102之SPL對(PL+C+SPL)Sw關係圖45 圖4-10 (c) Triton X-165之SPL對(PL+C+SPL)Sw關係圖45 圖4-11 EggPC的1H-NMR圖譜46 圖4-12 膽固醇的1H-NMR圖譜47 圖4-13 Triton X-100的1H-NMR圖譜48 圖4-14 添加Triton X-100 0.25 mM的微脂粒之1H-NMR圖譜49 圖4-15 添加Triton X-100 0.35 mM的微脂粒之1H-NMR圖譜50 圖4-16 添加Triton X-100 0. 5 mM的微脂粒之1H-NMR圖譜51 圖4-17 添加Triton X-100 0.65 mM的微脂粒之1H-NMR圖譜52 圖4-18 添加Triton X-100 0.8 mM的微脂粒之1H-NMR圖譜53 圖4-19 添加Triton X-100 1 mM的微脂粒之1H-NMR圖譜54 圖4-20 添加Triton X-100 1.5 mM的微脂粒之1H-NMR圖譜55 圖4-21 添加Triton X-100 2 mM的微脂粒之1H-NMR圖譜56 圖4-22 添加Triton X-102 0. 5 mM的微脂粒之1H-NMR圖譜57 圖4-23 添加Triton X-102 0.75 mM的微脂粒之1H-NMR圖譜58 圖4-24 添加Triton X-102 1 mM的微脂粒之1H-NMR圖譜59 圖4-25 添加Triton X-102 1.5 mM的微脂粒之1H-NMR圖譜60 圖4-26 添加Triton X-102 3 mM的微脂粒之1H-NMR圖譜61 圖4-27 添加Triton X-165 0.4 mM的微脂粒之1H-NMR圖譜62 圖4-28 添加Triton X-165 0.75 mM的微脂粒之1H-NMR圖譜63 圖4-29 添加Triton X-165 1 mM的微脂粒之1H-NMR圖譜64 圖4-30 添加Triton X-165 2 mM的微脂粒之1H-NMR圖譜65 圖4-31 添加Triton X-165 4 mM的微脂粒之1H-NMR圖譜66 圖4-32 添加Triton X-165 8 mM的微脂粒之1H-NMR圖譜67 圖4-33 添加Triton X-165 15 mM的微脂粒之1H-NMR圖譜68 圖4-34 Triton X-165結構式中-(OCH2CH2)n-OH分子在脂雙層內對外界Triton X-165的立體障礙示意圖69 圖4-35 三個不同區域(Region I、Region II、Region III),溶液內結構之示意圖70 表2-1 常見的脂質分子13 表2-2 常見的四大類界面活劑14 表4-1 不同界面活性劑分別在三個區域的濃度表34 表4-2 不同界面活性劑與微脂粒間不同轉折點之濃度表34 表4-3 三種不同界面活性劑logW與logC關係圖中斜線部分|dlogW/dlogC| 值34 表4-4 不同界面活性劑對微脂粒之K值34 表4-5 三種界面活性劑在微脂粒中K值與其CMC之乘積35 表4-6 三種不同界面活性劑在微脂粒中之Re b、Re m值35 表4-7 EggPC在1H-NMR圖譜上主要波峰的化學位移位置35 表4-8 膽固醇在1H-NMR圖譜上主要波峰的化學位移位置35 表4-9 Triton X-100在1H-NMR圖譜上主要波峰的化學位移位置36 表4-10 微脂粒中Triton X-100的含量36 表4-11 微脂粒中Triton X-102的含量37 表4-12 微脂粒中Triton X-165的含量35

1. Gregory Gregoriadis , “Liposome Technology—v1”, 1993, 1-36.
2. Gregory Gregoriadis , “Liposome Technology—v1”, 1993, 473.
3. D. Lichtenberg, R. J. Robson, and E. A. Dennis, ”Solubilization of phospholipids by detergents structural and kinetic aspects” Biochimica et Biophysica Acta, 1983, 737, 285.
4. M. Kodama, M. Kuwabara and S. Seki, “Successive phase-transition phenomena and phase diagram of the phosphatidylcholine-water system as revealed by differential scanning calorimetry” Biochimica et Biophysica Acta, 1982, 689, 567.
5. R. J. M. Tausk, J. Karmiggelt, C. Oudshoorn and J. Th. G. Overbeek, “Physical chemical studies of short-chain lecithin homologues. I. Influence of the chain length of the fatty acid ester and of electrolytes on the critical micelle concentration” Biophysical Chemistry, 1974, 1, 175.
6. R. J. M. Tausk, J. Karmiggelt, C. Oudshoorn and J. Th. G. Overbeek, “Physical chemical studies of short-chain lecithin homologues. II. Micellar weights of dihexanoyl- and diheptanoyllecithin” Biophysical Chemistry, 1974, 1, 184.
7. D. Lichtenberg and T. Markello, “Structural characteristics of phospholipids multilamellar liposomes” J. Pharmaceutical Sciences, 1984, 73, 122.
8. F. Olson, C. A. Hunt, F. C. Szoka, W. J. Vail and D. Papahadjopoulos, “Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes” Biochim. Biophys. Acta, 1979, 557, 9.

9. D. Lichtenberg, E. Freire, C. F. Schmidt, Y. Barenholz, P. L. Felgner, and T. E. Thompson, “Effect of surface curvature on stability, thermodynamic behavior, and osmotic activity of dipalmitoylphosphatidyl-
choline single lamellar vesicles” Biochemistry, 1981, 20, 3462.
10. Y. Barenholz, S. Amselem, and D. Lichtenberg, “A new method for preparation of phospholipids vesicles(liposomes)-french press” FEBS Lett, 1979, 99, 210.
11. D. Papahadjopoulos, W. J. Vail, K. Jacobson and G. Poste, “Cochleate lipid cylinders: formation by fusion of unilamellar lipid vesicles” Biochim. Biophys. Acta, 1975, 394, 483.
12. J. M. H. Kremer and P. H. Wiersema, “Exchange and aggregation in dispersions of dimyristoyl phosphatidylcholine vesicles containing myristic acid” Biochim. Biophys. Acta, 1975, 471, 348.
13. M. L. Jackson, C. F. Schmidt, D. Lichtenberg, B. J. Litman, and A. D. Albert, “Solubilization of phosphatidylcholine bilayers by octyl glucoside” Biochemistry, 1982, 21, 4576.
14. A. Helenius and K. Simons, “Solubilization of membranes by detergents” Biochim. Biophys. Acta, 1975, 415, 29.
15. J. Ulmius, G. Lindblom, G. Wennerström, L. B.-Å. Johansson, K. Fontell, O. Söderman, and G. Arvidson, “Molecular organization in the liquid-crystalline phases of lecithin-sodium cholate-water systems studied by nuclear magnetic resonance” Biochemistry, 1982, 21, 1553.
16. Edward A. Dennis, “Formation and characterization of mixed micelles of the nonionic surfactant Triton X-100 with egg, dipalmitoyl, and dimyristoyl phosphatidylcholines” Arch. Biochem. Biophys., 1974, 165, 764.

17. O. Zumbuehl and H. G. Weder, “Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles” Biochim. Biophys. Acta, 1981, 640, 252.
18. V. G. Cooper, S. Yedgar and Y. Barenholz, “Diffusion coefficients of mixed micelles of Triton X-100 and sphingomyelin and of sonicated sphingomyelin liposomes, measured by autocorrelation spectroscopy of Rayleigh scattered light” Biochim. Biophys. Acta, 1974, 363, 86.
19. S. Yedgar, Y. Barenholz and V. G. Cooper, “Molecular weight, shape and structure of mixed micelles of Triton X-100 and sphingomyelin” Biochim. Biophys. Acta, 1974, 363, 98.
20. Robert J. Robson and Edward A. Dennis, “Mixed micelles of sphingomyelin and phosphatidylcholine with nonionic surfactants Effect of temperature and surfactant polydispersity” Biochim. Biophys. Acta, 1979, 573, 489.
21. 界面活性劑的原理與應用,刈米孝夫 原著,王鳳英 編譯,.1993.
22. A. Helenius, D. R. McCaslin, E. Fries and C. Tanford, “Properties of Detergents” Methods in Enzymology, 1979, 56, 734.
23. T. J. McIntosh, “The effect of cholesterol on the structure of phosphatidylcholine bilayers” Biochim. Biophys. Acta, 1978, 513, 43.
24. J. J. Collins and M. C. Phillips, “The stability and structure of cholesterol-rich codispersions of cholesterol and phosphatidylcholine” J. Lipid Res., 1982, 23, 291.
25. S. Bhattacharya and S. Haldar, “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage” Biochim. Biophys. Acta, 2000, 1467, 39.
26. M. Cócera, O. López, L. Coderch, J. L. Parra and A. de la Maza, “Permeability investigations of phospholipids liposomes by adding cholesterol” Colloids and Surfaces A, 2003, 221, 9.

27. O. López, A. de la Maza, L. Coderch, C. López-Iglesias, E. Wehrli, and J. L. Parra, “Direct formation of mixed micelles in the solubilization of phospholipids liposomes by Triton X-100” FEBS Letters, 1998, 426, 314.
28. A. A. Ribeiro and E. A. Dennis, “Effect of thermotropic phase transitions of dipalmitoylphosphatidylcholine on the formation of mixed micelles with Triton X-100” Biochim. Biophys. Acta, 1974, 332, 26.
29. N. Deo, P. Somasundaran, “Mechanism of mixed liposome solubilization in the presence of sodium dodecyl sulfate” Colloids and Surfaces A, 2001, 186, 33.
30. N. Deo, P. Somasundaran, “Effects of sodium dodecyl sulfate on mixed liposome solubilization” Langmuir, 2003, 19, 7271.
31. W. H. Lim, M. J. Lawrence, “Influence of surfactant and lipid chain length on the solubilization of phosphatidylcholine vesicles by micelles comprised of polyoxyethylene sorbitan monoesters” Colloids and Surfaces A, 2004, 250, 449.
32. A. De La Maza, J. L. Parra, M. T. Garcia, I. Ribosa and J. Sanchez Leal, “Permeability changes in the phospholipid bilayer caused by nonionic surfactants” Journal of Colloid and Interface Science, 1992, 148, 310.
33. M. A. Partearroyo, A. Alonso, F. M. Goni, M. Tribout and S. Paredes, “Solubilization of phospholipid bilayers by surfactants belonging to the Triton X Series: Effect of polar group size” Journal of Colloid and Interface Science, 1996, 178, 156.
34. N. Fuchs, Z. Phys., 1934, 89, 736.
35. N. Deo, P. Somasundaran, “Disintegration of liposomes by surfactants: Mechanism of protein and cholesterol effects” Langmuir, 2003, 19. 2007.
36. 洪佳惠,碩士論文,國立中央大學,2003.
37. 劉得任,博士論文,國立中央大學,2000.
38. P. Schurtenberger, N. Mazer and W. Känzig, “Micelle to vesicle transition in aqueous solution of bile salt and lecithin” J. Phys. Chem., 1985, 89, 1042.
39. The Merck Index.
40. H. K. Tsao and W. L. Tseng, “The interactions between ionic surfactants and phosphatidylcholine vesicles: Conductometry” Journal of Chemical Physics, 2001, 115, 8125.
41. S. C. Chu, C. H. Hung, S. C. Wang, and H. K. Tsao, “Partition thermodynamics of ionic surfactants between phosphatidylcholine vesicle and water phases” Journal of Chemical Physics, 2003, 119, 3441.

QR CODE