簡易檢索 / 詳目顯示

研究生: 陳建州
Chien-Chou Chen
論文名稱: 中碳鋼之表面被覆硼化物及稀土元素(氧化鑭、氧化釔)之微結構分析與耐磨耗研究
A Study of Microstructure and Wear Performance on Medium Carbon Steel Clad Layer which Clad by Borides and Rare Earth Elements (La2O3、Y2O3)
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 蘇侃
Hon So
蔡顯榮
Hsien-Lung Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 162
中文關鍵詞: 磨耗硼化物稀土元素氬銲
外文關鍵詞: Wear, Rare Earth Element, Boride, TIG
相關次數: 點閱:392下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討添加不同比例稀土元素(氧化鑭與氧化釔),對於中碳鋼表面氬焊被覆二硼化鈦(TiB2)與硼化鎢(WB)兩種陶瓷被覆層之顯微結構與磨耗行為的影響。並找出影響耐磨耗能力之主要關鍵,以做為中碳鋼表面耐磨耗改質的依據。
    研究結果顯示,TiB2系列之被覆層均屬於散佈強化型機構。添加氧化鑭(La2O3)、氧化釔(Y2O3)皆具有促使TiB2被覆層強化顆粒之叢聚(clustered)效應,而形成較大尺寸之強化相。並且TiB2系列被覆層之耐磨耗能力則以添加氧化釔(Y2O3)之被覆層效果最佳。原因在於其被覆層中擁有數量較多、尺寸較大之強化相,具較佳之基地固守效應所致。
    然而,WB系列之被覆層則屬於析出強化型機構。在WB被覆層中添加氧化鑭(La2O3)、氧化釔(Y2O3)可以使基地的顯微組織微細化,並促進析出物之成長。添加氧化鑭(La2O3)、氧化釔(Y2O3)的WB被覆層內的析出相較厚實,具較佳之機械互鎖效應,其中以添加4.5%氧化釔之WB被覆層效果最佳,使其被覆層之耐磨能力有效地提升。


    This thesis studies on the effect of rare earth (La2O3 and Y2O3) on microstructure morphology and wear resistance of clad layer for medium carbon steel cladded with TiB2 and WB powder respectively. Additionally, the major factors that influence wear performance of clad layer were found out in this study.
    According to the results of this study, the wear performance of all TiB2 clad layer were improved by the dispersion strengthening. The results also show that adding a little La2O3 and Y2O3 that can promote particles of reinforcement clustered and to connect each other forming a bigger reinforcement. However, the bigger reinforcement has better bonding strength with matrix and can increase significantly the wear resistance ability of TiB2 clad layers.
    Nevertheless, WB clad layers were strengthened by the precipitation of reinforcing phases. The results show that adding a little La2O3 and Y2O3 can promote microstructure refining and precipitates growing in WB clad layer. However, the bigger precipitates possess better mechanical interlocking effect and can increase significantly the wear-resistance ability in WB cladding specimens. The wear performance of WB-4.5%Y2O3 clad layer was improved obviously.

    中文摘要 英文摘要 誌 謝 目 錄 表索引 圖索引 第一章 前言 第二章 文獻回顧 2-1惰氣鎢極電弧銲被覆的特點 2-2熔融銲接的凝固特徵與形態 2-2-1顯微結構 2-2-2銲道外觀形態 2-3硼化物粉末的特性 2-3-1二硼化鈦(Titanium Diboride) 2-3-2硼化鎢(Tungsten Boride) 2-4稀土元素 2-4-1稀土元素介紹 2-4-2稀土元素在表面改質的相關研究 2-5被覆添加之稀土元素的特性 2-5-1氧化鑭(Lanthanum Oxide) 2-5-2氧化釔(Yttrium Oxide) 2-6強化機構-冶金方式 2-7磨耗機構 第三章 實驗過程 3-1實驗步驟 3-2試片製作 3-2-1基材的製作 3-2-2被覆材料的製作 3-2-3磨耗試片的製作 3-3氬銲被覆方法 3-3-1被覆試片的校正 3-3-2氬銲被覆參數 3-3-3熔填材料的成份比例 3-4被覆層機械性質測試 3-5被覆層顯微組織的觀察與成份分析 3-6磨耗試驗 3-6-1磨耗試驗機的校正 3-6-2磨耗試驗條件 3-6-3磨耗量的量測與計算 3-6-4磨耗表面的觀察 3-7被覆粉末的粒徑量測 第四章 結果與討論 4-1被覆層的基本結構分析 4-1-1不同稀土元素對被覆層熔滲深度的影響 4-1-2不同銲接電流對TiB2添加稀土元素被覆層熔滲深度的影響 4-2被覆層微觀組織與成份分析 4-2-1銲接電流100A之TiB2及TiB2添加稀土元素被覆層的顯微組織 4-2-2銲接電流100A之WB及WB添加稀土元素被覆層的顯微組織 4-2-3銲接電流150A之TiB2及TiB2添加稀土元素被覆層的顯微組織 4-3被覆層的機械性質 4-3-1銲接電流100A之TiB2及WB被覆層 4-3-2銲接電流100A之TiB2及TiB2添加稀土元素被覆層 4-3-3銲接電流100A之WB及WB添加稀土元素被覆層 4-3-4銲接電流150A之TiB2及TiB2添加稀土元素被覆層 4-3-5奈米壓痕量測銲接電流100A之TiB2及WB被覆層 4-4不同被覆層的磨耗行為分析 4-4-1 AISI 1050基材的耐磨耗能力評估 4-4-2 AISI 1050基材的磨耗分析 4-4-3銲接電流100A之TiB2及TiB2添加稀土元素被覆層的耐磨耗能力評估 4-4-4銲接電流100A之TiB2及TiB2添加稀土元素被覆層的磨耗分析 4-4-5銲接電流100A之WB及WB添加稀土元素被覆層的耐磨耗能力評估 4-4-6銲接電流100A之WB及WB添加稀土元素被覆層的磨耗分析 第五章 結論與建議 5-1結論 5-2建議 參考文獻

    1.K.Holmberg, A.Matthews, Coatings tribology, Amsterdam, Elsevier, (1994).
    2.I.M.Hutchings, Friction and wear of engineering materials, Boca Raton, CRC Press, (1992).
    3.H.G.Fan, H.L.Tsai, S.J.Na, Heat transfer and fluid flow in a partially or fully penetrated weld pool in gas tungsten arc welding, International Journal of Heat and Mass Transfer 44 (2001) 417-428.
    4.Y.C.Lin, S.W.Wang, Wear behavior of ceramic powder cladding on an S50C steel surface, Tribology International 36 (2003) 1-9.
    5.林原慶、李明奇、王世衛 , 「中碳鋼表面被覆SiC粉末耐磨耗性能之研究」 中國機械工程學會第十六屆學術研討會論文集 , 第 507-514 頁 , 新竹、清大 (12/1999).
    6.S.W.Wang, Y.C.Lin, Y.Y.Tsai, The effects of various ceramic-metal on wear performance of clad layer, the 6th Asia Pacific Conference on Materials Processing (6th APCMP), Taipei, (2003/9).
    7.林原慶、王世衛、蔡益元 , 合金元素對中碳鋼表面被覆陶瓷粉末耐磨耗性能之影響 中國機械工程學會第十七屆學術研討會論文集 , 第四冊製造與材料 , 789∼795 , 高雄、高雄第一科技大學 (12/2000).
    8.伍凱義 , 鑄鐵表面被覆耐磨耗材料之研究 , 國立台灣科技大學碩士論文 , 2000.
    9.J.F.Lancaster, Metallurgy of welding, London, Chapman & Hall, (1993).
    10.H.F.Brinson, Engineered materials handbook, Vol. 4, ASM International, Metals Park, Ohio, (1987).
    11.B.J.Kooi, Y.T.Pei, J.Th.M.De Hosson, The evolution of microstructure in a laser clad TiB-Ti composite coating, Acta Materialia 51 (2003) 831-845.
    12.K.A.Khor, L.G.Yu, G.Sundararajan, Formation of hard tungsten boride layer by spark plasma sintering boriding, Thin Solid Films 478 (2005) 232-237.
    13.錢景常譯 , 「稀土族十五個元素」 , 原子能文庫/鄭振華 主編(1969).
    14.W.Maocai, Y.Yonggen, W.Weitao, Z. Jingpu, Effect of Yttrium on microstructure and hot corrosion performance of laser clad Co-Based alloy, Journal of the Chinese Rare Earth Society (English Edition) 11 (1993) 278-282.
    15.W.Weitao, Microstructure of laser-surface-alloyed cast iron with Cr-Al-Y alloy, Surface & Coatings Technology 72 (1995) 181-188.
    16.Y.Yongqiang, Existent forms and effects of yttrium in laser claddings of MCrAlY, Journal of South China University of Technology (Natural Science) 26 (1998) 65-68.
    17.Y.Yongqiang, Y.Baohe, Z.Zhihong, Q.Changqing, W.Xiaoguo, Effect of rare-earth element in laser cladding high temperature alloy, Proceedings of SPIE - The International Society for Optical Engineering, 3862 (1999) 438-442.
    18.C.Xiang, J.Hong, Effects on structure and abrasion resistance of GCr15 steel by surface gas-phase RE diffused permeation with laser melting solidification, High Technology Letters 6 (2000) 29-32.
    19.J.Hong, C.Xiang, Z.Liancheng, Influence of surface gas-phase rare earth permeation plus laser melting solidification on microstructure and corrosion resistance of pure iron, Journal of Rare Earths 20 (2002) 120-123.
    20.L.Jiajun, Z.Baoliang, Effect of rare-earth elements on the wear resistance of iron base thermal spray-welding coating and its mechanism, Mocaxue Xuebao/Tribology, 14 (1994) 298-305.
    21.X.H.Wang, Z.D.Zou, S.L.Song, S.Y.Qu, Modifying effect of rare earth La2O3 on the Fe-C-Cr-Si-B laser clad coatings, Journal of Materials Science Letters 22 (2003) 713-715.
    22.劉國雄、林樹均、李勝隆、鄭晃忠、葉鈞蔚 , 工程材料科學 , 全華科技圖書股份有限公司 , 民85.
    23.G.E.Dieter, Mechanical metallurgy, London, McGraw-Hill, (1988).
    24.H.Sin, N.Saka, N.P.Suh, Abrasive wear mechanisms and the grit size effect, Wear 55 (1) (1979) 163-190.
    25.G.W.Stachowiak, A.W.Batchelor, Engineering tribology, Amsterdam, Elsevier, New York (1993).
    26.C.Horst, Tribology : a systems approach to the science and technology of friction, lubrication and wear, Amsterdam, Elsevier Scientific Pub. Co., New York (1978).
    27.V.V.Pokropivny, V.V.Skorokhod, A.V.Pokropivny, Atomistic mechanism of adhesive wear during friction of atomic-sharp tungsten asperity over (114) bcc-iron surface, Materials letters 31 (1997) 49-54.
    28.D.Markov, D.Kelly, Mechanisms of adhesion-initiated catastrophic wear: pure sliding, Wear 239 (2000) 189-210.
    29.T.F.J.Quinn, J.L.Sullivan, D.M.Rowson, Origins and development of oxidational wear at low ambient temperatures, Wear 94 (1984) 175-191.
    30.T.F.J.Quinn, W.O.Winer, An experimental study of the “hot-spots” occurring during the oxidational wear of tool steel on sapphire, Journal of Tribology 109 (1987) 315-320.
    31.M.Vardavoulias, The role of hard second phases in the mild oxidational wear mechanism of high-speed steel-based materials, Wear 173 (1994) 105-114.
    32.T.F.J.Quinn, Computional methods applied to oxidational wear, Wear 199 (1996) 169-180.
    33.T.F.J.Quinn, Oxidational wear modeling part Ⅲ. The effects of speed and elevated temperatures, Wear 216 (1998) 262-275.
    34.T.F.J.Quinn, The oxidational wear of low alloy steels, Tribology International 35 (2002) 691-715.
    35.J.M.Guilemany, J.M.Miguel, S.Vizcaino, F.Climent, Role of three-body abrasion wear in the sliding wear behaviour of WC-Co coatings obtained by thermal spraying, Surface and Coatings Technology 140 (2001) 141-146.
    36.H.So, The mechanism of oxidational wear, Wear 184 (1995) 161-167.
    37.N.P.Suh, The delamination theory of wear, Wear 25 (1973) 111-124.
    38.李明奇,製程參數對中碳鋼表面被覆SiC粉末耐磨耗性能之影響,國立台灣科技大學碩士論文,1998。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE