簡易檢索 / 詳目顯示

研究生: 張亘鈞
Hsuan-chun Chang
論文名稱: 沉積金屬氧化物於自組裝單分子薄膜修飾之玻璃基板
Fabrication of TCO on Self-Assembled Monolayer Modified Glass
指導教授: 戴龑
Yian Tai
口試委員: 陳文章
Wen-Chang Chen
洪儒生
Lu-Sheng Hong
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 127
中文關鍵詞: 自組裝單分子薄膜
外文關鍵詞: TCO, ITO, AZO
相關次數: 點閱:198下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文利用射頻電漿濺鍍沉積氧化銦錫(ITO)與氧化鋅鋁(AZO)薄膜於自組裝單分子層薄膜(self-assembled monolayer, SAM)修飾後的玻璃基板,一般而言,低溫製程環境下所沉積出來的ITO與AZO薄膜不具有結晶性,需要靠高溫、回火來改善。但我們藉由SAM改質玻璃基板,在低溫甚至室溫下沉積ITO與AZO薄膜後均能獲得良好的結晶性。ITO薄膜成長發現藉由尾端基團SH與金屬有較佳的化學鍵結,可以捕捉更多的鋅原子,進而增加導電性。此外,由於氧化鋅屬於六方晶系(HCP)結構,藉由不同尾端基團改變了玻璃的表面張力及表面偶極性,於室溫下可控制AZO薄膜具有c軸成長取向抑或是a軸成長取向。


In this work, we studied the deposition of ITO and AZO on self-assembled monolayer (SAM) modified glass substrate with RF sputtering. In general , deposition of ITO and AZO thin films under low temperature condition result in the amorphous or less crystallinity structures, which needed to be improved by post annealing of thin film at high temperature. However, in this study, we have found that high crystallinity can be achieved in low temperature by modification of glass substrate by SAMs prior to ITO and AZO deposition.The ITO with high electrical conductivitycan be fabricated by using –SH SAM modified glass substrate. We attributed the improvement of electrical conductivity to larger quantity of Sn atoms attached on thiol functional group. In addition, for the deposition of AZO, the surface tension of glass substrate was modulated by fabrication of SAMs with different functional groups, which the preferential growth direction of AZO thin film could be controlled to along c-axis or a-axis.

中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 XI 名詞縮寫表 XIII 壹、緒論 1 1-1 前言 1 1-2 研究目的 2 貳、相關理論 3 2-1 自組裝單分子層薄膜(Self-assembled monolayer,SAM) 3 2-1.1 自組裝單分子層薄膜簡介 3 2-2 透明導電氧化物(Transparent Conducting Oxide, TCO) 6 2-2.1 TCO透明導電玻璃簡介 6 2-2.2 銦錫氧化物(Tin doped Indium oxide, ITO)簡介 8 2-2.2.1 軟性電子中替代銦錫氧化物(Tin doped Indium oxide, ITO)之透明導電材料 9 2-2.3 鋁鋅氧化物(Aluminum doped Zinc oxide, AZO)簡介 15 2-2.3.1 不同鋁鋅氧化物(Aluminum doped Zinc oxide, AZO)之製程 17 、實驗方法與步驟 22 3-1 自組裝單分子薄膜製備 22 3-1.1 實驗藥品及耗材 22 3-1.2 玻璃基板清洗程序 23 3-1.3 沉積氧化銦錫薄膜前之自組裝單分子層薄膜的製備 24 3-2 以RF-sputtering成長TCO 25 3-2.1 實驗氣體及耗材 25 3-2.2 RF-sputtering實驗裝置圖 26 3-2.3 RF-sputtering沉積ITO於已利用SAM修飾過後的玻璃基板 27 3-2.4 RF-sputtering沉積AZO於已利用SAM修飾過後的玻璃基板 28 3-3 實驗流程 29 3-4 樣品分析量測 30 3-4.1 分析量測儀器簡介 30 肆、結果與討論 40 4-1 自組裝單分子層薄膜之成長與分析 40 4-1.1 自組裝單分子薄膜HS-SAM之分析 41 4-1.1.1 使用不同濃度HS-SAM成長於玻璃基板上 41 4-1.2 自組裝單分子薄膜H2N-SAM之分析 49 4-1.3 自組裝單分子薄膜H3C-SAM之分析 51 4-1.4 自組裝單分子薄膜F3C-SAM之分析 53 4-2 修飾過後的玻璃基板所沉積之ITO薄膜分析 55 4-2.1 低溫下使用自組裝單分子薄膜修飾玻璃基板所沉積ITO透明導電層結構及表面型態分析 55 4-2.2 低溫下使用自組裝單分子薄膜修飾玻璃基板所沉積ITO透明導電層組成分析 65 4-2.3 低溫下使用自組裝單分子薄膜修飾玻璃基板所沉積ITO透明導電層電性分析 74 4-2.4 低溫下使用自組裝單分子薄膜修飾玻璃基板所沉積ITO透明導電層光學分析 77 4-3 使用HS-SAM自組裝單分子薄膜修飾玻璃基板與未經由SAM 修飾過後的玻璃基板所沉積ITO透明導電層溫度效應 79 4-4 修飾過後的玻璃基板所沉積之AZO薄膜分析 81 4-4.1 室溫下使用自組裝單分子薄膜修飾玻璃基板所沉積AZO透明導電層結構及表面型態分析 81 4-4.2 室溫下使用自組裝單分子薄膜修飾玻璃基板沉積AZO透明導電層初始狀態組成分析 93 4-4.3 室溫下使用自組裝單分子薄膜修飾玻璃基板所沉積AZO透明導電層電性分析 95 4-4.4 室溫下使用自組裝單分子薄膜修飾玻璃基板所沉積AZO透明導電層光學分析 101 4-5 利用不同比例法成長混合自組裝單分子薄膜之分析 103 4-5.1 利用不同比例成長混合自組裝單分子薄膜成長與分析 103 4-5.2 AZO沉積於不同比例混合自組裝單分子薄膜修飾玻璃基板之分析 104 伍、結論與未來展望 106 參考文獻 108

〔1〕吳建良、楊宏仁、黃建福、葉峻銘、陳頤承, 材料世界網. 2010/06/01
〔2〕Kobayashi, H.; Ishida, Y.; Nakato, Y.; Tsubomura, H. J. Appl. Phys. 1991,69, 1736.
〔3〕Tahar, R. B. H.; Ban, T.; Ohya, Y.; Takahashi, Y. J. Appl. Phys. 1998, 83,2631.
〔4〕Odaka, H.; Iwata, S.; Taga, N.; Ohnishi, S.; Kaneta, Y.; Shigesato, Y.
J. Appl. Phys. 1997, 36, 5551.
〔5〕Costellano, J. E. Handbook of Display Technology; Academic Press:
New York, 1992.
〔6〕Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2007, 91, 1592.
〔7〕Flink, S.; van Veggel, F. C. J. M.; Reinhoudt, D. N. J. Phys. Org. Chem.
2001, 14, 407.
〔8〕Crego-Calama, M.; Reinhoudt, D. N. Adv. Mater. 2001, 13, 1171.
〔9〕Halliwell, C. M.; Cass, A. E. G. Anal. Chem. 2001, 73, 2476.
〔10〕Onclin, S.; Ravoo, B. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. 2005,44,6282.
〔11〕Pallavicini, P.; Dacarro, G.; Galli, M.; Patrini, M. J. Colloid Interface Sci.2009, 332, 432.
〔12〕J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo and George M. Whitesides, Chem. Rev. 2005, 105, 1103
〔13〕Ulman. A. “An Introduction to Ultra-thin Organic Films”, Academic Press, San Diego, 1991
〔14〕Ulman. A. Chem. Rev. 1996, 96, 1533
〔15〕Saghar Khodabakhsh, Brett M. Sanderson, Jenny Nelson, and Tim S. J. Adv. Funct. Mater. 2006, 16, 95
〔16〕Jong Soo Kim, Jong Hwan Park, and Ji Hwang Lee, Applied Physics Letters 2007, 91, 112111
〔17〕M. Yamaguchi, K. Suezawa, Y. Takahashi, K. I. Arai, S. Kikuchi, Y. Shimada, S. Tanabe and K. Ito,J.Magnetism and Magnetic
Materals ,2000, 215-216, 2
〔18〕Maria Elena Fragala and Graziella Malandrino,Microelectronics Journal ,2008, 40, 2
〔19〕A.F. Aktaruzzaman, G.L. Sharma and L.K. Malhotra, Thin Solid Films, 1991, 198, 20
〔20〕David Ginley, B. Royb, Aiko Ode, C. Warmsingh, Y. Yoshida, Philip Parilla, Charles Teplin,Tanya Kaydanova, Alex Miedaner, Calvin Curtis, Alex Martinson, Tim Coutts, Dennis Readey, Hideo Hosono and John Perkins, Thin Solid Films, 2003, 445, 2
〔21〕Y. -S. Choi, C. -G. Lee and S. M. Cho, Thin Solid Films, 1996, 289, 1
〔22〕R.K. Shukla, Anchal Srivastava, Atul Srivastava and K.C. Dubey, Journal of Crystal Growth ,2006,294,2
〔23〕Tadatsugu Minami, Toshihiro Miyata, Yuusuke Ohtani and Yuu Mochizuki, Japenes Journal of Applied Physics,2006,45,L409
〔24〕劉智生, 洪儒生, 化工技術 2007, 15(3) , 176
〔25〕M. Nisha, S. Anusha, Aldrin Antony, R. Manoj and M.K. Jayaraj
Appl. Surf. Sci. 252, p. 1430 (2005).
〔26〕John F. Moulder, William F. Stickle, Peter E. Sobpl, Kenneth D. Bomben, ”Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics, USA, 1995
〔27〕P.V. Zant,, Microchip Fabrication, 3rd, McGraw-Hill, New York,
1996.
〔28〕R.C. Jaeger. Introduction to Microelectronic Fabrication, Prentice
Hall, New Jersey, 2001.
〔29〕B.D. Cullity and S.R. Stock, Elements of X-ray diffraction, 3rd,
Prentice Hall, New Jersey, 2001.
〔30〕P.N. Prasad, Nanophotonics, Wiley Interscience, New Jersey,
2004.
〔31〕施敏,半導體元件物理與製作技術,第二版, 國立交通大學出版
社,1980.
〔32〕Hin-Lap Yip, Steven K. Hau, Nam Seob Baek, Hong Ma, Alex K.-Y. Jen, Adv. Mater. 20, 2376(2008)
〔33〕M. GRUNZE, W. ECK, “Landolt-Brnstein - Group III Condensed Matter”, Springer-Verlag (2006).
〔34〕Simon Flink, Frank C. J. M. van Veggel, David N. Reinhoudt, J.
Phys. Org. Chem. 2001, 14, 407
〔35〕J. Park. H. Lee, Mater. Sci. and Eng. C .2004, 24, 311
〔36〕J. L. Lenhart, and Wen-li Wu, Langmuir 2003, 19, 4863
〔37〕Hiroyuki Sugimura, Atsushi Hozumi, Tetsuya Kameyama and
Osamu Takai, Surf. and Interface Anal. 2002, 34, 550
〔38〕Latz, R.; Daube, C.; Haranou, T.; Ocker, B.; Suzuki, K. J. Non-Cryst.
Solids 1997, 218, 329.
〔39〕Jung, Y. S.; Lee, S. S. J. Cryst. Growth 2003, 259, 343.
〔40〕Yan, C.; Zharnikov, M.; G€olzh€auser, A.; Grunze, M. Langmuir 2000, 16,6208.
〔41〕Brewer, S. H.; Brown, D. A.; Franzen, S. Langmuir 2002, 18, 6857.
〔42〕Karsi, N.; Lang, L.; Chehimi, M.; Delamar, M.; Horowitz, G. Langmuir 2006, 22, 3118.
〔43〕Pulsipher, A.; Westcott, N. P.; Luo, W.; Yousaf, M. N. Adv. Mater. 2009,21, 3082
〔44〕Rieley, H.; Kendall, G. K.; Zemicael, F. W.; Smith, T. L.; Yang, S.
Langmuir 1998, 14, 5147.
〔45〕Lee, H.-C.; Park, O. O. Vacuum 2004, 77, 69.
〔46〕Luo, S. N.; Kono, A.; Nouchi, N.; Shoji, F. J. Appl. Phys. 2006, 100,
113701.
〔47〕Lee, H.-C.; Park, O. Vacuum 2004, 75, 275.

〔48〕Lee, H.-C. Appl. Surf. Sci. 2006, 252, 3428.
〔49〕H. Haick, M. Ambrico, T. Ligonzo, D.Cahen, Adv. Mater.16,2145
〔50〕K. B. Wiberg, J. Org. Chem. 67, 4787(2002)
〔51〕Gao Xiao-Yong, Lin Qing-Geng, Feng Hong-Liang, Liu Yu-Fen and Lu Jing-Xiao Thin Solid Films 517 (2009) 4684–4688
〔52〕Stephen D. Evans, Edward Urankar, Abraham Ulman, and Nancy
Ferris, J. Am. Chem. Soc. 1991, 113, 4121
〔53〕Young-Sung Kim , Weon-Pil Tai Applied Surface Science 253 (2007) 4911–4916

QR CODE