簡易檢索 / 詳目顯示

研究生: 楊盛强
Sheng-Chiang Yang
論文名稱: 奈米級FeZSM-5觸媒及其酚合成活性研究
Nanosized FeZSM-5 Catalyst and It’s Activity in Phenol Synthesis
指導教授: 劉端祺
Tuan-Chi Liu
口試委員: 蕭敬業
Ching-Yeh Hsio
陳郁文
Yu-Wen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 108
中文關鍵詞: 奈米級FeZSM-5水熱法骨架
外文關鍵詞: Nanosized, FeZSM-5, hydrothermal method, framework
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以水熱法合成出奈米級的ZSM-5與FeZSM-5,比較其於氧化亞氮直接氧化苯製酚的活性,同時研究FeZSM-5觸媒中之鐵含量對反應活性的影響,以找出最佳鐵含量之FeZSM-5觸媒。
本實驗中所合成的觸媒以各種儀器鑑定其性質,包括以XRD鑑定觸媒的結晶;以XANES鑑定Fe於FeZSM-5骨架中的鍵結情形;以FESEM、BET及XRD半高寬,分析觸媒粒徑;以EDX及ICP-MS測量觸媒組成;以NH3-TPD及FTIR來了解觸媒的酸性。
觸媒之苯直接氧化製酚活性是在常壓下測試,使用直通微型管狀反應器,反應物為苯及氧化亞氮,反應物以連續流動方式流經觸媒床,使用觸媒的重量為0.4克,反應後的產物以氣象層析儀分析。
研究的結果發現,鐵可存在於ZSM-5的骨架中,但有一最大的鋁取代量,在本研究所用的合成條件下,合成母液中的Al,進入沸石骨架的比例低於Si,所合成的ZSM-5之粒徑小於FeZSM-5,在ZSM-5上的酸以Lewis酸為主,在FeZSM-5以Brønsted酸為主。
觸媒活性測試的結果發現,在適量的鐵下,FeZSM-5較ZSM-5的活性高,於 (Fe+Al) / Si = 1 / 60 的各FeZSM-5觸媒中Fe/Al的最佳比值介於0.2至0.7之間, ZSM-5的鐵含量過多時,氧化活性過強,不利於酚的生成。


Nanosized ZSM-5and FeZSM-5 were synthesized and their activities in the production of phenol by direct benzene oxidation were examined. The effect of ion content in FeZSM-5 for the direct oxidation was investigated to explore the optimum amount of ion in FeZSM-5.
The catalysts synthesized in this research were characterized using varied instruments and methods: Using XRD to know the crystalline structures of the catalysts, XANES to understand the bonding structure of the Fe in FeZSM-5 framework, FESEM, BET and half width of XRD peak to measure the catalyst size, EDX and ICP-MS to explore the catalyst composition and finally utilizing NH3-TPD and FTIR to understand the acid condition of the catalysts.
The activity of the catalysts in the direct oxidation of benzene for phenol was studied under atmospheric pressure using a micro-reactor. The reactants, included benzene and nitrous oxide, flew continuously through the catalyst bed. The bed, in a typical run, contained 0.4 gram of catalyst. The products from the reaction were analyzed by gas chromatograph.
The results of this research show that the FeZSM-5 in this study contains Fe in its framework, but there exists a maximum amount of the ion. In synthesizing ZSM-5, large fraction of the silicon ion in the mother liquid enters the framework than that of aluminum ion. The crystalline size of ZSM-5 is, in genera, smaller than that of FeZSM-5 synthesized under the same condition. In addition, the acid on ZSM-5 is mostly Lewis acid while that in FeZSM-5 is mainly Brønsted acid.
FeZSM-5 catalyst with proper amount of ion is more active than ZSM-5. Among the FeZSM-5 of (Fe+Al) / Si = 1 / 60, the one with a Fe/Al ratio between 0.2 and 0.7 exhibits the highest activity. Excess amount of ion in FeZSM-5 results in too high a oxidation ability and is not favored for the production of phenol.

目錄 第一章 緒 論 1 第二章 文獻回顧 4 2.1 酚 4 2.1.1 酚的用途 4 2.1.2 目前酚的合成方法 4 2.2 苯直接催化氧化製備酚 9 2.2.1 以O2為氧化劑 9 2.2.2 以H2O2為氧化劑 9 2.2.3 以N2O為氧化劑 9 2.3 沸石 11 2.3.1 介紹 11 2.3.2 沸石的合成 14 2.3.3 沸石的應用 15 2.3.4 沸石的改質 20 2.3.5 沸石的酸性 21 2.3.6 沸石物理性質的鑑定 22 2.3.7 ZSM-5沸石 24 2.3.8 FeZSM-5沸石 29 第三章 實驗方法與步驟 30 3.1 實驗氣體、藥品與儀器設備 30 3.1.1 實驗氣體 30 3.1.2 實驗藥品 30 3.1.3 實驗儀器 32 3.2 觸媒的製備 33 3.2.1 沸石合成 33 3.2.2 離子交換 36 3.2.3 水熱裝置原理與使用維護 36 3.3 氧化苯製酚的反應 38 3.3.1 實驗裝置與條件 38 3.3.2 分析方法與儀器 40 3.4 觸媒的鑑定 43 3.4.1 程式升溫脫附(TPD) 43 3.4.2 X光粉末繞射儀(XRD) 46 3.4.3 場發射掃瞄式電子顯微鏡(FESEM) 47 3.4.4 能量分散光譜儀 (EDX) 48 3.4.5 表面積測定(BET)與氣體吸附測定 49 3.4.6 傅立葉轉換紅外線光譜(FTIR)分析 52 3.4.7 感應耦合電漿質譜儀(ICP-MS) 54 3.4.8 X光近緣結構(XANES) 55 第四章 結果與討論 58 4.1 觸媒的組成鑑定 58 4.1.1 X光繞射分析(XRD) 58 4.1.2 EDX分析 59 4.1.3 感應耦合電漿質譜儀 (ICP-MASS) 60 4.1.4 X光近緣結構(XANES)及X光吸收精細結構(EXEAFS) 61 4.1.5 程式升溫脫附 (NH3 –TPD) 64 4.1.6 傅立葉轉換紅外線光譜分析(FTIR) 65 4.2 沸石的粒徑 69 4.2.1 FESEM 69 4.2.2 t - plot 72 4.2.3 XRD半高寬 76 4.2.4 綜合整理 77 4.3 N2O直接氧化苯製酚反應 78 4.3.1 N2O直接氧化苯製酚反應機構的討論 78 4.3.2 鐵鋁比例的效應 79 4.3.3 最佳反應溫度 82 4.3.4 觸媒的穩定性 84 4.3.5 0.4FeZSM-5觸媒的再生 86 第五章 結論 87 第六章 參考文獻 88

1. Argauer, R. J., and G. R. Landolt, “Crystalline Zeolite ZSM-5 and Method of Preparing the Same” U.S. Pat. 3,702,889 (1972).
2. Aguado, J., D.P. Serrano, “Low Temperature Synthesis of ZSM-5 by Nanocrystals” Micropor. Mesopor. Mater.,75.p.41(2004).
3. Adebajo, M. O. and R. L. Frost, “Oxidative Benzen Methylation with Methane over MCM-41 and Zeolite Catalysts “ Eng. Fuel. 19,p.783-790(2005).
4. Barrer, R. M., “Preparation of Mordeinte Type Zeolite”, J. Chem. Soc., 2158 (1962).
5. Break, D. W. Crystalline Zeolite Y, U.S. Pat. 3,130,007(1964)
6. Break, D. W. and N. A. Acara, Crystalline Zeolite L, U.S. Pat. 3,216,789 (1965).
7. Breck, D. W., Zeolite Molecular Sieves: Structure, Chemistry, and Use, Wiley, p.162 (1973).
8. Bibby, D. M., N. B. Milestone, and J. E. Patterson,”Coke Formation in Zeolite ZSM-5”, J. Catal., 97, p.493-502 (1986).
9. Brueva, T. R. and C. Howitt, “Direct Partial Oxidation of Benzene to Phenol on Zeolite Catalysts”, Appl. Catal. A: Gen., 86, p139-146(2001).
10. Cañizares, P. A. de Lucas and F. Dorado, ”n-Butane Isomerization over H-mordenite : Role of the Monomolecular Mechanism”, Appl. Catal. A. 196,225~231(2000).
11. Chu, P., Crystalline Zolite ZSM-11, U.S. Pat. 3,709,979 (1973).
12. Dubkov, K. A., N. S. Ovanesyan, A. A. Shteinman, E. V. Starokon, and G. I. Panov, “Evolution of Iron States and Formation of α-Sites upon Activation of FeZSM-5 Zeolites”, J. Catal., 207, p. 341-352 (2002).
13. Emig, G. ; Reitzmann, A.; Klemm, E. “Kinetics of the hydroxylation of benzene with N2O on modified ZSM-5 zeolites” Chem. Eng. 28, pp. 149-164 (2002).
14. Fajula, F., Lami E. B. “Process for Dealuminization of the Synthetic Zeolite” U.S. Pat. 5,310,534(1994).
15. Grieken, R. V., J. L. Sotelo, J. M. Menendez, and J. A. Melero, “Anomalous Crystallization Mechanism in The Synthesis of Nanocrystalline ZSM-5”, Micropor. Mesopor. Mater., 39, p135-147(2000).
16. Hafele, M., A. Reitzmann, D. Roppelt, and G. Eming, “Hydroxylation of Benzene with Nitrous Oxide on H-Ga-ZSM-5 zeolite”, Appl. Catal. A: Gen., 150, p. 153-164 (1997).
17. Ivanov, A. A., V. S. Chernyavsky, M. J. Gross, A. S. Kharitonov, A. K. Uriarte, and G. I. Panov, “Kinetics of Benzene to Phenol Oxidation over Fe-ZSM-5 Catalyst”, Appl. Catal. A: Gen., 249, p327-343(2003).
18. Iwamoto, M., J. Hirata, K. Matsukami, and S. Kagawa, “Catalytic Oxidation by Oxide Radical Ions. 1. One-Step Hydroxylation of Benzene to Phenol over Group 5 and 6 Oxides Supported on Silica Gel”, Phys. Chem., 87, p. 903-905 (1983).
19. Jacobsen, H. J., C. Madsen., V. W. Janssens, “Zeolite by confined space synthesis – characterization of th zcid site in nanasized ZSM-5 by ammonia desorption and 27Al/29Si-MAS NMR spectroscopy” Micropor. Mesopor. Mater.,39.p.393 - 401(2000).
20. Jones, C. A., D. Stec, S. C. Larsen, “Magnetic Resonance Studies of Reaction of Urea and Nitric Oxide on FeZSM-5 , HZSM-5 and Silicalite” , J. Catal. 212, p.329-336 (2003).
21. Kooyman, P. J., P. van der Waal, and H. van Bekkum, “Acid Dealumination of ZSM-5”, Zeolites, 18, p. 50-53 (1997).
22. Kresnawahjuesa, O., G. H. Kuhl, R. J. Gorte, and C. A. Quierini, “An Examination of Bronsted Acid Sites in H-[Fe]ZSM-5 for Olefin Oligomerization and Adsorption”, J. of Catal., 210, p. 106-115 (2002).
23. Kustov L. M., A. L. Tarasov, V. I. Bogdan, A. A. Tyrlov, and J. W. Fulmer, “Selective Oxidation of Aromatic Compounds on Zeolites Using N2O as A Mild Oxidant A New Approach to Design Active Sites”, Catal. Today, 61, p.123-128(2000).
24. Lee, K.H., Y. W Lee., Y. C. Ha, “Cracking of Vacuum Gas Oil on the Dealuminated Zeolite“, J. Catal. ,p. 178,352-362(1998).
25. Oumi, Y., S. Nemoto, S. Nawata, T. Fukushima, “Effect of the Framework Structure on Dealuminated Behavior of Zeolite“ Mater. Chem. Phy, 78, p. 551-557 (2002).
26. Ono, Y.; Fujii, Y.; Wakita, H.; Kimura, K.; Inui, T. “Catalytic combustion of odors in domestic spaces on ion-exchanged zeolites” Appl. Catal. pp. 227-233 (1995).
27. Panov, G. I., A. S. Kharitonov, and V. I. Sobolev, “Oxidative Hydroxylation Using Dinitrogen Monoxide: A Possible Route for Organic Synthesis over Zeolites”, Appl. Catal. A: Gen., 98, p.1-20 (1993).
28. Panov, G.I.; Dubkov, K.A.; Sobolev, V.I.; Talsi, E.P.; Rodkin, M.A.; Watkins, N.H.; Shteinman, A.A. “Kinetic isotope effects and mechanism of biomimetic oxidation of methane and benzene on FeZSM-5 zeolite” Chem. 29, pp. 155-161(1997)
29. Plank, C. J. , E. J. Rosinski, and M. K. Rubin, “Crystalline Zeolite and Method of Preparing Same”U.S. Pat. 4,046859(1997)
30. Reding, G., T. Maurer, and B. Kraushaar-Czarnetzki, ”Comparing Synthesis Routes to Nano-Crystalline Zeolite ZSM-5”, Micropor. Mesopor. Mater., 57, p. 83-92 (2003).
31. Reitzmann, A., E. Klemm, and G. Eming, “Kinetics of The Hydroxylation of Benzene with N2O on Modified ZSM-5 Zeolites”, Chem. Eng., 90, p149-164(2002).
32. Ribera, A., I. W. C. E. Arends, S. de Vries, J. Perez-Ramirez, and R. A. Sheldon, “Preparation, Characterization, and Performance of FeZSM-5 for the Selective Oxidation of Benzene to Phenol with N2O”, J. Catal., 195, p. 287-297 (2000).
33. Rubin, M. K., C. J. Plank, and E. J. Rosinski, “Crystalline Zeolite ZSM-34 and Method of Preparing Same” U.S. Pat. 4,806,186 (1998)
34. Scherzer, J., “The Preparation and Characterization of Aluminum Deficient Zeolite, Catal. Mater. 10, p. 157 (1984).
35. Tasi, G. , Förster, H. , Evanics, F. , Kiricsi, I., Fejes, P. ,“Cracking of Neopentane over Acidic Zeolites: Influence of Isobutane and Isobutene Admission” Chem, pp. 269-276 (1995).
36. Waclaw, A., K. Nowinska, and W. Schwieger, ”Benzene to Phenol Oxidation over Iron Exchanged Zeolite ZSM-5”, Appl. Catal. A: Gen., 270, p.151-156(2004).
37. Yang, G., D. Zhou, L. Xianchun, X. Bao, ”Possible active sites in Fe/ZSM-5 Zeolite for the Direct Benzene Hydroxylation to Phenol” J. Mol. Str. p. 208-215 (2006).
38. Yoshizawa, K., Y. Shiota, and T. Kamachi, ”Mechanistic Proposals for Direct Benzene Hydroxylation over Fe-ZSM-5 Zeolites”, J. Phys. Chem. B, 107, p.11404-11410 (2003).
39. Charles, N. S. ,”Heterogeneous Catalysis in Industrial Practice”,McGRAM-Hill International Editions.,1991.
40. 江文彥,”酚與化學工業”,化工技術 ,1997,11月,第五卷,第十一期。
41. 王國鎮,楊思明,”沸石觸媒之特性與應用”,化工技術,1994,3月,第二卷,第三期。
42. 張昆典,”大放異彩的觸媒—ZSM-5”,化工技術,1994,2月,第二卷,第二期。
43. 王奕凱,李秉傑,邱宏明,”非均勻項觸媒原理與應用”,渤海堂文化事業有限公司,1988,2月。
44. 吳春貴,”冒泡泡的分子篩-沸石在觸媒界的應用”,科學月刊,1987,10月,250期。
45. 王亞軍,唐頤,王星東, “奈米沸石的合成、性質、組裝及應用”,石油化工,31,3 (2002).
46. 許樹恩,吳泰伯, ”X光繞射原理與材料結構分析”,中國材料科學學會,1992,7月。
47. 張光毅,”絲光沸石合成條件與觸媒性質的關係”,國立台灣科技大學化工系碩士論文,2004年七月。
48. 紀炅廷,”以氧化亞氮氧化法制備酚之研究” 國立台灣科技大學化工系碩士論文,2005年七月。

QR CODE