簡易檢索 / 詳目顯示

研究生: 蔡柏坤
Po-Kun Tsai
論文名稱: 應用演化式推論模式推估人工邊坡地錨荷重量-以新北側環快五重溪段為例
Prediction of Ground Anchors Load For Artificial Slopes Using Evolutionary AI Model-Case Study of The New Taipei Side Ring highway WuChong Creek Case
指導教授: 鄭明淵
Min-Yuan Cheng
口試委員: 曾仁杰
Ren-Jye Dzeng
楊亦東
I-Tung Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 96
中文關鍵詞: 人工邊坡地錨荷重量
外文關鍵詞: artificial slopes, ground anchors load
相關次數: 點閱:164下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

新北市平地開發已趨近於飽和,且因應都市的快速開發及拉近城鄉差距,交通建設在山坡地開發已無可避免,但邊坡經人為挖填整地後,易受邊坡內、外在因素影響,常有滑動問題,故本研究案例之人工邊坡係以地錨擋土設施來進行穩固,但如何確保地錨擋土設施的穩定,是管理維護單位重要的課題,也直接影響到用路人安全。
本研究透過文獻整理及監測因子,彙整分析可能影響地錨荷重量之初步因子,利用統計軟體SPSS對初步因子與輸出變數進行相關性分析,客觀挑選出影響人工邊坡地錨荷重量之影響因子作為預測模式的輸入變數,以地錨荷重量作為輸出變數,並應用各種演化式推論模式透過資料庫的學習訓練與測試,找出輸入與輸出變數間的最佳映射關係,以得到最高預測準確率之推論模式。
經各種演化式推論模式預測及比較,結果顯示以「SOS-LSSVM」整體準確性最佳,測試之絕對百分比誤差(MAPE)為9.53%,屬於精準的預測,所以此模式有效取代傳統主觀經驗之預測,並可運用在無裝設地錨荷重計之人工邊坡預測,以快速且準確了解地錨的受力狀況,做為後續應變處理的參考。


Development in the flat area of New Taipei City is approaching saturation. To respond to the rapid development of the city and reduce the gap between urban and rural areas, building traffic facilities on hillsides has become inevitable. However, after land excavation, filling, and preparation, hillsides become susceptible to the influence of various internal and external factors and tend to slide. Therefore, this study investigated artificial slopes secured by ground anchors and retaining structures. Assuring the stability of ground anchors and retaining structures is a crucial topic for administrative and maintenance units, because the results can directly affect the safety of road users.
Through a literature review and factor monitoring, this study compiled and analyzed preliminary factors that can affect the load of ground anchors. Correlation analysis was conducted on the preliminary factors and output variables with statistical software. Factors that affect the load of artificial slopes were selected objectively as the input variables of the prediction model, and the load of ground anchors was used as the output variables. Subsequently, multiple evolutionary inference models were used to perform database learning, training, and testing, through which the optimal mapping relationships between input and output variables were identified. The inference model with the highest prediction accuracy was then obtained.
The prediction and comparison of various artificial intelligence reasoning models, the results show that the overall accuracy of "SOS-LSSVM" is the best. The mean absolute percent error (MAPE) for the test is 9.53%, this is a precise prediction. Therefor, this model effectively replaces the prediction of traditional subjective experience, it can be used in prediction of artificial slopes without load cell, and so fast and accurate understanding of the ground anchor force, therefor, it can be a reference for subsequent contingency processing.

目錄 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 3 1.3 研究範圍與限制 4 1.4 研究方法與流程 5 1.4.1 研究方法 5 1.4.2 研究流程 6 1.5 論文架構 8 第2章 文獻回顧 9 2.1 五重溪順向坡監測系統 9 2.1.1 新北側環快五重溪段人工邊坡介紹 9 2.1.2 五重溪段人工邊坡之監測儀器 11 2.1.3 地錨荷重計監測資料庫 13 2.2 影響地錨荷重之因素 15 2.2.1 地錨之介紹 15 2.2.2 地錨荷重之影響因素 16 2.2.3 邊坡滑動影響因子 17 2.3 演化式推論模式 21 2.3.1 類神經網路(ANN) 21 2.3.2 倒傳遞類神經網路(BPNN) 23 2.3.3 支持向量機(SVM) 24 2.3.4 最小平方差支持向量機(LS-SVM) 26 2.3.5 演化式最小平方差支持向量機(ELSIM) 28 2.3.6 生物共生演算法最小平方差支持向量機(SOS-LSSVM) 29 第3章 地錨荷重推估模式建立 35 3.1 確立影響因子 35 3.1.1 因子評估 35 3.1.2 篩選因子 41 3.1.3 因子確立 44 3.2 建立資料庫 45 3.2.1 資料庫建立 45 3.2.2 正規化 46 3.3 模式訓練與測試 47 3.3.1 推論模式選用 47 3.3.2 模式執行過程 48 3.3.3 各模式十摺推論結果 57 3.4 模式成果比較 59 3.4.1 誤差衡量 59 3.4.2 各模式結果比較 61 第4章 推估模式之應用 66 4.1 案例資料及輸出結果 66 4.2 處置措施 70 4.3 實務應用機制 76 第5章 結論與建議 78 5.1 結論 78 5.2 建議 79 參考文獻 80

參考文獻
1. 新北市政府新建工程處 (2014) 新北市側環快南端銜接點延伸至五重溪段工程順向坡監測工作總報告書。
2. 地質雲(2017)取自http://www.geologycloud.tw/map/liquefaction/zh-tw。
3. 中國土木水利工程學會(1994)地錨設計和施工準則暨解說(第三版)。
4. 交通部(2015)公路邊坡工程設計規範。
5. 交通部(2015)公路邊坡大地工程設施維護與管理規範。
6. 趙衛君,「應用高斯過程建立分階式山區道路邊坡崩塌預測模式之研究-以阿里山公路為例」,國立台灣科技大學,2005。
7. 李建宗,「應用高斯過程建立台北縣山區道路-邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文,2006。
8. 李鈞宇,「應用高斯過程建立新中橫公路邊坡崩塌預測模式之研究」,國立臺灣科技大學營建工程系碩士論文,2006。
9. 交通部運輸研究所(2006)坡地災害緊急搶修與復建整合技術研究(1/2)。
10. 蔡岱佑,「台灣中部山區道路邊坡崩塌潛勢之比較分析」,國立臺灣科技大學營建工程系碩士論文,2007。
11. 胡毓港,「阿里山山區道路邊坡崩塌規模評估與特性探討」,國立臺灣科技大學營建工程系碩士論文,2007。
12. 陳冠霖,「演化式風險偏好支持向量機推論模式(ERP-SIM)之研究-以道路邊坡坍塌預測為例」,國立臺灣科技大學營建工程系碩士論文,2009。
13. 交通部運輸研究所(2009)山區道路坡地災害防治技術整合研究(2/4)。
14. 胡逸舟,「降雨引致山區道路邊坡崩塌潛勢之研究-以阿里山公路為例,國立臺灣科技大學營建工程系博士論文,2011。
15. A.-K. Jain, J. Mao and K.-M. Mohiuddin, Artificial neural networks: a tutorial, Computer, vol. 29(3), pp. 31-44, 1996.
16. Cortes and V. Vapnik, “Support-vector network”, Machine Learning, Vol.20, No.3, pp.273-297, 1995.
17. Suykens, J., et al., 2002, Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd.
18. Min-Yuan Cheng and Nhat-Duc Hoang, 2012, Evolutionary Least Squares Support Vector Machine – Userguide, Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech.
19. Min-Yuan Cheng and Nhat-Duc Hoang, “Estimating Compressive Strength of Rubberized Concrete Using Evolutionary Least Squares Support Vector Machine”,Technical Report, CIC Lab, National Taiwan Univ. of Sci. and Tech,2012.
20. Min-Yuan Cheng and Doddy Prayogo, “Symbiotic Organisms Search: A new metaheuristic optimization algorithm”, Computers & Structures, Vol. 139, pp. 98-112, 2014.
21. G.G. Tejani, V.J. Savsani, Patel V. K., 2016, Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. Journal of Computational Design and Engineering.
22. M.-Y. Cheng, D. Prayogo, D.-H. Tran, 2015, Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic Organisms Search. Journal of Computing in Civil Engineering: 04015036.
23. D.-H. Tran, M.-Y. Cheng, D. Prayogo, 2016, A novel Multiple Objective Symbiotic Organisms Search (MOSOS) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems, 94: 132-145.
24. M.-Y. Cheng, C.-K. Chiu, Y.-F. Chiu, Y.-W. Wu, Z.-L. Syu, D. Prayogo, C.-H. Lin, 2014, SOS optimization model for bridge life cycle risk evaluation and maintenance strategies. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 26(4): 293-308.
25. S. Duman, 2016, Symbiotic organisms search algorithm for optimal power flow problem based on valve-point effect and prohibited zones. Neural Computing and Applications: 1-15.
26. H. Kamankesh, V.G. Agelidis, A. Kavousi-Fard, 2016, Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand. Energy, 100: 285-297.
27. E. Ruskartina, V.F. Yu, B. Santosa, A.A.N.P. Redi, 2015, Symbiotic Organism Search (SOS) for Solving the Capacitated Vehicle Routing Problem. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 101: 857-861.
28. A. Panda, S. Pani, 2016, A Symbiotic Organisms Search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems. Applied Soft Computing, 46: 344-360.
29. Min-Yuan Cheng, Doddy Prayogo and Yu-Wei Wu, (in preparation), “Predicting the Pavement Rutting Behavior of Asphalt Mixtures Using Symbiotic Organisms Search - Least Squares Support Vector Machine Inference Model”, Construction and Building Materials.
30. Lewis, C. D., 1982, International and Business Forecasting Methods. London: Butterwo.
31. 高秋振、何樹根、林庚鈴、簡進龍、侯仁傑、溫廷睿,坡地安全檢查與維護,技師期刊第67期,2014。
32. 林裕益,臺北市人工邊坡風險管理機制之研究,工程環境會刊第29期,2012。

QR CODE