簡易檢索 / 詳目顯示

研究生: 朱展均
Zhan-Jun Zhu
論文名稱: 理論計算探討二維BiOI材料於氣體感測器之應用
Theoretical Investigations into Two-Dimensional BiOI as A Toxic Gas Sensor
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 葉旻鑫
Min-Hsin Yeh
葉丞豪
Chen-Hao Yeh
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 126
中文關鍵詞: 氣體感測器非平衡函數方法BiOI
外文關鍵詞: Gas sensor, NEGF, BiOI
相關次數: 點閱:185下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

不斷擴大的人類活動和迅速的工業發展,使得空氣污染的問題變得日益嚴重。其中工廠排放的污染氣體會導致酸雨、全球暖化,乃至於危害人類健康。因此,如何有效偵測並監控這些有害氣體在近年來成為一項重要的議題。新穎的二維材料BiOI,由於其獨特的層狀結構、高比表面積、良好的電光特性、且價格便宜等優點引起了科學界和業界的廣泛關注。然而BiOI當作氣體感測器的應用,計算上並沒有太多的深入探討。因此,我們使用密度泛函理論 (DFT) 探討氣體分子(NO, NO2, SO2, SO3, O2 及 H2O) 對BiOI (001) 和 (012) 以及BiOI (001)的缺陷表面上的吸附及感測特性。首先,我們利用分子動力學 (AIMD) 的模擬,確認三種BiOI表面在室溫下都具有良好的穩定性。此外,DFT計算結果顯示NO分子吸附在BiOI (001)表面上擁有最大的吸附能,而NO2分子及SO3分子分別在缺陷BiOI (001)表面及原始BiOI (012)表面上具有最大的吸附能。
接著我們使用非平衡格林函數方法 (NEGF) 計算了氣體分子吸附在表面上時的電流-電壓曲線關係。計算結果顯示了不同的材料表面對於不同的氣體具有特定的靈敏度,其中BiOI (001)表面對NO分子具有最好的靈敏度。另一方面,我們觀察到在BiOI (012)表面施加x或y方向的電流時,分別對於NO2和SO3氣體的偵測有著不一樣的靈敏度。此外,我們探討熱力學中的波茲曼分布對於BiOI表面選擇性的影響,計算結果顯示BiOI表面對偵測氣體有著極其出色的選擇性。
最後,本研究計算了感測器的恢復時間,計算結果發現NO分子在BiOI (001)表面以及NO2分子在BiOI (012)表面具有極低的恢復時間(分別為0.16 ns及3.89 s),但是,BiOI (012)表面對於SO3有著較長的恢復時間,需要藉由提升操作溫度來維持材料的重複使用性。總結來說,BiOI表面具有良好的熱穩定性,對偵測氣體的高靈敏度和選擇性,基於上述結果我們可預期BiOI有機會成為高潛力的感測器材料。


With the development of human and industrial activities, air pollution has become a more serious problem, causing acid rain, global warming, and even endangering human health. As a result, it has become very critical to determine how to detect and monitor these toxic gases. In recent years, there has been considerable interest in the two-dimensional material BiOI due to its unique layered structure, good optical and electrical properties, and high specific surface area. However, few studies have been published on the sensing research of this extraordinary BiOI material. In this context, this thesis presents computational investigations of the adsorption behavior and sensing properties of NO, NO2, SO2, SO3, O2, and H2O gas molecules on the pristine and defective BiOI surfaces by density functional theory (DFT) calculations. AIMD simulation results show that all surfaces are thermally stable at room temperature. In addition, DFT results show that the NO molecule can stably adsorb on the pristine BiOI (001) surface. Meanwhile, NO2 and SO3 molecules can stably adsorb on the defective BiOI (001), and pristine BiOI (012) surfaces, respectively.
Next, we studied the current-voltage (I-V) curve of all surfaces toward the detected gases using nonequilibrium Green's function (NEGF) formalism. We found that the pristine BiOI (001) surface is particularly sensitive to the NO molecule. When we applied x-direction or y-direction voltage into the system, we found that the pristine BiOI (012) surface exhibits different sensitivity towards the NO2 and SO3 molecules, respectively. Moreover, we used Boltzmann distribution to determine the selectivity of each detected gas. The calculated results demonstrate that the pristine BiOI (001) and (012) surfaces have excellent selectivity towards the target gas.
Finally, we explored the recovery time of various BiOI surfaces. The recovery time of NO and NO2 molecules on the pristine BiOI (001) and (012) surfaces is 0.16 ns and 3.89 s. Nevertheless, the recovery time for the SO3 molecule on the BiOI (012) surface is too long, so it is necessary to increase the operating temperature to reduce the recovery time. Based on these results, the pristine BiOI (001) and (012) surfaces exhibit great thermal stability and high sensitivity and selectivity towards the target gas, suggesting that this two-dimensional BiOI substrate could be a potential material for sensing applications.

Abstract I 摘要 III 致謝 V Contents VI Index of Figures VIII Index of Tables XII Chapter 1. Introduction 1 1.1 Toxic gases 1 1.2 Gas sensor 3 1.2.1 The working principle of gas sensor 3 1.2.2 Key parameters of gas sensor 6 1.3 Two dimensional materials 10 1.4 Bismuth oxyiodide (BiOI) 13 1.5 Present study 15 Chapter 2. Theoretical Methodology 16 2.1 Computational details 16 2.2 Model 19 2.2.1 Bulk 19 2.2.2 Surface 20 Chapter 3. Results and Discussion 26 3.1 Stability 26 3.2 Gas adsorption 28 3.2.1 Gas adsorption on pristine BiOI (001) surface 28 3.2.2 Gas adsorption on defective BiOI (001) surface 35 3.2.3 Gas adsorption on pristine BiOI (012) surface 42 3.3 Analysis of electronic properties 49 3.3.1 Band gap of three different surfaces 49 3.3.2 Pristine BiOI (001) surface 51 3.3.3 Defective BiOI (001) surface 58 3.3.4 Pristine BiOI (012) surface 66 3.4 Transport properties 73 3.4.1 Electronic device model 73 3.4.2 Transport properties on pristine BiOI (001) surface 75 3.4.3 Transport properties on defective BiOI (001) surface 84 3.4.4 Transport properties on pristine BiOI (012) surface along x direction 90 3.4.5 Transport properties on pristine BiOI (012) surface along y direction 98 3.4.6 Summary 107 3.5 Recovery time 109 Chapter 4. Conclusions 113 Reference 116 Appendix 124

1. Stone, V., Environmental Air Pollution. American journal of respiratory and critical care medicine 2000, 162, S44-S47.
2. Laumbach, R. J.; Kipen, H. M., Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution. Journal of allergy and clinical immunology 2012, 129, 3-11.
3. Colvile, R.; Hutchinson, E. J.; Mindell, J.; Warren, R., The Transport Sector as a Source of Air Pollution. Atmospheric environment 2001, 35, 1537-1565.
4. Chernyshev, V.; Zakharenko, A.; Ugay, S.; Hien, T.; Hai, L.; Kholodov, A.; Burykina, T.; Stratidakis, A.; Mezhuev, Y. O.; Tsatsakis, A., Morphologic and Chemical Composition of Particulate Matter in Motorcycle Engine Exhaust. Toxicology reports 2018, 5, 224-230.
5. Anjum, N. A., Good in the Worst: Covid-19 Restrictions and Ease in Global Air Pollution. 2020.
6. Seo, H. J.; Jeong, R. H.; Boo, J.-H.; Song, J.; Boo, J.-H., Study on Chemical Removal of Nitric Oxide (No) as a Main Cause of Fine Dust (Air Pollution) and Acid Rain. Applied Science and Convergence Technology 2017, 26, 218-222.
7. Skalska, K.; Miller, J.; Ledakowicz, S., Kinetics of Nitric Oxide Oxidation. Chemical Papers 2010, 64, 269-272.
8. Dimitriades, B., Effects of Hydrocarbon and Nitrogen Oxides on Photochemical Smog Formation. Environmental Science & Technology 1972, 6, 253-260.
9. Gutor, S.; Salinas, R.; Bazzano, J.; Richmond, B.; Blackwell, T.; Polosukhin, V., Long-Term Effects of So2 in the Murine Respiratory System. In D109. Airway of Interest: Epithelial and Smooth Muscle Function in Health and Disease, American Thoracic Society: 2022; pp A5490-A5490.
10. McLaughlin Jr, S.; Taylor Jr, G., So2 Effects on Dicot Crops: Some Issues, Mechanisms, and Indicators. Sulfur dioxide and vegetation. Physiology, ecology and policy issues 1985, 227-249.
11. Oesch, S.; Faller, M., Environmental Effects on Materials: The Effect of the Air Pollutants So2, No2, No and O3 on the Corrosion of Copper, Zinc and Aluminium. A Short Literature Survey and Results of Laboratory Exposures. Corrosion Science 1997, 39, 1505-1530.
12. Chauhan, S. K.; Saini, N.; Yadav, V. B., Recent Trends of Volatile Organic Compounds in Ambient Air and Its Health Impacts: A Review. Int. J. Technol. Res. Eng 2014, 1, 667.
13. Cape, J., Effects of Airborne Volatile Organic Compounds on Plants. Environmental Pollution 2003, 122, 145-157.
14. Yadav, A.; Indurkar, P. D., Gas Sensor Applications in Water Quality Monitoring and Maintenance. Water Conservation Science and Engineering 2021, 6, 175-190.
15. Tsujita, W.; Yoshino, A.; Ishida, H.; Moriizumi, T., Gas Sensor Network for Air-Pollution Monitoring. Sensors and Actuators B: Chemical 2005, 110, 304-311.
16. Ryabtsev, S.; Shaposhnick, A.; Lukin, A.; Domashevskaya, E., Application of Semiconductor Gas Sensors for Medical Diagnostics. Sensors and Actuators B: Chemical 1999, 59, 26-29.
17. Berna, A., Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis. Sensors 2010, 10, 3882-3910.
18. Wilson, A. D., Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors 2013, 13, 2295-2348.
19. Sadik, O. A.; Wanekaya, A. K.; Andreescu, S., Advances in Analytical Technologies for Environmental Protection and Public Safety. Journal of Environmental Monitoring 2004, 6, 513-522.
20. Kennedy, R. F.; Nahavandi, S. In A Low-Cost Intelligent Gas Sensing Device for Military Applications, 2008 Congress on Image and Signal Processing, IEEE: 2008; pp 3-8.
21. Liu, H.; Zhang, L.; Li, K. H. H.; Tan, O. K., Microhotplates for Metal Oxide Semiconductor Gas Sensor Applications—Towards the Cmos-Mems Monolithic Approach. Micromachines 2018, 9, 557.
22. Yi, W. Y.; Lo, K. M.; Mak, T.; Leung, K. S.; Leung, Y.; Meng, M. L., A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems. Sensors 2015, 15, 31392-31427.
23. Capone, S.; Forleo, A.; Francioso, L.; Rella, R.; Siciliano, P.; Spadavecchia, J.; Presicce, D.; Taurino, A., Solid State Gas Sensors: State of the Art and Future Activities. Journal of optoelectronics and Advanced Materials 2003, 5, 1335-1348.
24. Korotcenkov, G., Handbook of Gas Sensor Materials. Conventional approaches 2013, 1.
25. Yamazoe, N.; Shimanoe, K., Fundamentals of Semiconductor Gas Sensors. In Semiconductor Gas Sensors, Elsevier: 2020; pp 3-38.
26. Wohltjen, H.; Barger, W.; Snow, A.; Jarvis, N. L., A Vapor-Sensitive Chemiresistor Fabricated with Planar Microelectrodes and a Langmuir-Blodgett Organic Semiconductor Film. IEEE transactions on electron devices 1985, 32, 1170-1174.
27. Weisz, P., Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis. The Journal of Chemical Physics 1953, 21, 1531-1538.
28. Singh, A.; Sikarwar, S.; Verma, A.; Yadav, B. C., The Recent Development of Metal Oxide Heterostructures Based Gas Sensor, Their Future Opportunities and Challenges: A Review. Sensors and Actuators A: Physical 2021, 332, 113127.
29. Hermawan, A.; Septiani, N. L. W.; Taufik, A.; Yuliarto, B.; Yin, S., Advanced Strategies to Improve Performances of Molybdenum-Based Gas Sensors. Nano-Micro Letters 2021, 13, 1-46.
30. Patil, R.; More, P. V.; Jain, G.; Khanna, P. K.; Gaikwad, V., Batio3 Nanostructures for H2s Gas Sensor: Influence of Band-Gap, Size and Shape on Sensing Mechanism. Vacuum 2017, 146, 455-461.
31. Chakraborty, S.; Pal, M., Highly Selective and Stable Acetone Sensor Based on Chemically Prepared Bismuth Ferrite Nanoparticles. Journal of Alloys and Compounds 2019, 787, 1204-1211.
32. Tian, W.; Liu, X.; Yu, W., Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Applied Sciences 2018, 8, 1118.
33. Jarrah, R. M. S., Study of Gas Sensor Based on Tio 2 Nanostructures for the Detection of No 2 Gas in Air. International Journal of Energy and Environment 2019, 10, 157-162.
34. Wang, Y.; Ma, S.; Wang, L.; Jiao, Z., A Novel Highly Selective and Sensitive Nh3 Gas Sensor Based on Monolayer Hf2co2. Applied Surface Science 2019, 492, 116-124.
35. Darvishnejad, M. H.; Reisi-Vanani, A., Multiple Co2 Capture in Pristine and Sr-Decorated Graphyne: A Dft-D3 and Aimd Study. Computational Materials Science 2020, 176, 109539.
36. Shukla, V.; Warna, J.; Jena, N. K.; Grigoriev, A.; Ahuja, R., Toward the Realization of 2d Borophene Based Gas Sensor. The Journal of Physical Chemistry C 2017, 121, 26869-26876.
37. Knezevic, M.; Drach, B.; Ardeljan, M.; Beyerlein, I. J., Three Dimensional Predictions of Grain Scale Plasticity and Grain Boundaries Using Crystal Plasticity Finite Element Models. Computer Methods in Applied Mechanics and Engineering 2014, 277, 239-259.
38. Hess, P., Bonding, Structure, and Mechanical Stability of 2d Materials: The Predictive Power of the Periodic Table. Nanoscale Horizons 2021.
39. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K. S., Detection of Individual Gas Molecules Adsorbed on Graphene. Nature materials 2007, 6, 652-655.
40. Lazar, P.; Karlicky, F.; Jurecka, P.; Kocman, M. s.; Otyepková, E.; Šafářová, K. r.; Otyepka, M., Adsorption of Small Organic Molecules on Graphene. Journal of the American Chemical Society 2013, 135, 6372-6377.
41. Aghaei, S.; Aasi, A.; Farhangdoust, S.; Panchapakesan, B., Graphene-Like Bc6n Nanosheets Are Potential Candidates for Detection of Volatile Organic Compounds (Vocs) in Human Breath: A Dft Study. Applied Surface Science 2021, 536, 147756.
42. Yavari, F.; Koratkar, N., Graphene-Based Chemical Sensors. The journal of physical chemistry letters 2012, 3, 1746-1753.
43. Shen, J.; Hu, Y.; Shi, M.; Li, N.; Ma, H.; Ye, M., One Step Synthesis of Graphene Oxide− Magnetic Nanoparticle Composite. The Journal of Physical Chemistry C 2010, 114, 1498-1503.
44. Wu, J.; Chen, J.; Wang, C.; Zhou, Y.; Ba, K.; Xu, H.; Bao, W.; Xu, X.; Carlsson, A.; Lazar, S., Metal–Organic Framework for Transparent Electronics. Advanced Science 2020, 7, 1903003.
45. Takeda, K.; Shiraishi, K., Theoretical Possibility of Stage Corrugation in Si and Ge Analogs of Graphite. Physical Review B 1994, 50, 14916.
46. Wang, T.; Zhao, R.; Zhao, M.; Zhao, X.; An, Y.; Dai, X.; Xia, C., Effects of Applied Strain and Electric Field on Small-Molecule Sensing by Stanene Monolayers. Journal of Materials Science 2017, 52, 5083-5096.
47. Hu, W.; Xia, N.; Wu, X.; Li, Z.; Yang, J., Silicene as a Highly Sensitive Molecule Sensor for Nh 3, No and No 2. Physical Chemistry Chemical Physics 2014, 16, 6957-6962.
48. Xia, W.; Hu, W.; Li, Z.; Yang, J., A First-Principles Study of Gas Adsorption on Germanene. Physical Chemistry Chemical Physics 2014, 16, 22495-22498.
49. Kumar, V.; Rajput, K.; Roy, D. R., Monolayer Bi2c3: A Promising Sensor for Environmentally Toxic Ncgs with High Sensitivity and Selectivity. Applied Surface Science 2020, 534, 147609.
50. Li, J.-H.; Wu, J.; Yu, Y.-X., Dft Exploration of Sensor Performances of Two-Dimensional Wo3 to Ten Small Gases in Terms of Work Function and Band Gap Changes and Iv Responses. Applied Surface Science 2021, 546, 149104.
51. Wei, W.; Li, W.; Wang, L., High-Selective Sensitive Nh3 Gas Sensor: A Density Functional Theory Study. Sensors and Actuators B: Chemical 2018, 263, 502-507.
52. Zhang, J.; Wang, S.; Wang, Y.; Wang, Y.; Zhu, B.; Xia, H.; Guo, X.; Zhang, S.; Huang, W.; Wu, S., No2 Sensing Performance of Sno2 Hollow-Sphere Sensor. Sensors and Actuators B: Chemical 2009, 135, 610-617.
53. Tao, P.; Xu, Y.; Zhou, Y.; Song, C.; Qiu, Y.; Dong, W.; Zhang, M.; Shao, M., Nitrogen Oxide (No) Gas-Sensing Properties of Bi 2 Moo 6 Nanosheets Synthesized by a Hydrothermal Method. Materials Research 2017, 20, 786-790.
54. Arumugam, M.; Choi, M. Y., Recent Progress on Bismuth Oxyiodide (Bioi) Photocatalyst for Environmental Remediation. Journal of Industrial and Engineering Chemistry 2020, 81, 237-268.
55. Ren, X.; Gao, M.; Zhang, Y.; Zhang, Z.; Cao, X.; Wang, B.; Wang, X., Photocatalytic Reduction of Co2 on Biox: Effect of Halogen Element Type and Surface Oxygen Vacancy Mediated Mechanism. Applied Catalysis B: Environmental 2020, 274, 119063.
56. Alzamly, A.; Bakiro, M.; Ahmed, S. H.; Sallabi, S. M.; Al Ajeil, R. A.; Alawadhi, S. A.; Selem, H. A.; Al Meshayei, S. S. M.; Khaleel, A.; Al-Shamsi, N., Construction of Biof/Bioi Nanocomposites with Tunable Band Gaps as Efficient Visible-Light Photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2019, 375, 30-39.
57. Zhu, L.-P.; Liao, G.-H.; Bing, N.-C.; Wang, L.-L.; Yang, Y.; Xie, H.-Y., Self-Assembled 3d Biocl Hierarchitectures: Tunable Synthesis and Characterization. CrystEngComm 2010, 12, 3791-3796.
58. Shang, M.; Wang, W.; Zhang, L., Preparation of Biobr Lamellar Structure with High Photocatalytic Activity by Ctab as Br Source and Template. Journal of Hazardous Materials 2009, 167, 803-809.
59. Li, H.; Jia, Q.; Cui, Y.; Fan, S., Photocatalytic Properties of Bioi Synthesized by a Simple Hydrothermal Process. Materials Letters 2013, 107, 262-264.
60. Vargas-Bernal, R., Electrical Properties of Two-Dimensional Materials Used in Gas Sensors. Sensors 2019, 19, 1295.
61. Fan, W.; Li, H.; Zhao, F.; Xiao, X.; Huang, Y.; Ji, H.; Tong, Y., Boosting the Photocatalytic Performance of (001) Bioi: Enhancing Donor Density and Separation Efficiency of Photogenerated Electrons and Holes. Chemical Communications 2016, 52, 5316-5319.
62. Xia, J.; Yin, S.; Li, H.; Xu, H.; Yan, Y.; Zhang, Q., Self-Assembly and Enhanced Photocatalytic Properties of Bioi Hollow Microspheres Via a Reactable Ionic Liquid. Langmuir 2011, 27, 1200-1206.
63. Zhao, K.; Zhang, X.; Zhang, L., The First Bioi-Based Solar Cells. Electrochemistry Communications 2009, 11, 612-615.
64. Hu, C.; Huang, H.-X.; Lin, Y.-F.; Tung, K.-L.; Chen, T.-H.; Lo, L., Heterostructural Design of I-Deficient Bioi for Photocatalytic Decoloration and Catalytic Co 2 Conversion. Catalysis Science & Technology 2019, 9, 3800-3811.
65. Zhang, J.; Chen, Z.; Qiu, Y.; Li, M.; Yang, H.; Huang, Y.; Chen, J., Preparing Bioi Photocatalyst for Degradation of Methyl Blue in Wastewater. Inorganic Chemistry Communications 2018, 98, 58-61.
66. Te Velde, G.; Baerends, E., Precise Density-Functional Method for Periodic Structures. Physical Review B 1991, 44, 7888.
67. Te Velde, G. t.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J.; Snijders, J. G.; Ziegler, T., Chemistry with Adf. Journal of Computational Chemistry 2001, 22, 931-967.
68. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical review letters 1996, 77, 3865.
69. Kresse, G.; Joubert, D., From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical review b 1999, 59, 1758.
70. Kohn, W.; Sham, L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical review 1965, 140, A1133.
71. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H., A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (Dft-D) for the 94 Elements H-Pu. The Journal of chemical physics 2010, 132, 154104.
72. Grimme, S., Semiempirical Gga‐Type Density Functional Constructed with a Long‐Range Dispersion Correction. Journal of computational chemistry 2006, 27, 1787-1799.
73. Császár, P.; Pulay, P., Geometry Optimization by Direct Inversion in the Iterative Subspace. Journal of Molecular Structure 1984, 114, 31-34.
74. Franchini, M.; Philipsen, P. H. T.; Visscher, L., The Becke Fuzzy Cells Integration Scheme in the Amsterdam Density Functional Program Suite. Journal of computational chemistry 2013, 34, 1819-1827.
75. Van Lenthe, E.; Baerends, E. J., Optimized Slater‐Type Basis Sets for the Elements 1–118. Journal of computational chemistry 2003, 24, 1142-1156.
76. Bitzek, E.; Koskinen, P.; Gähler, F.; Moseler, M.; Gumbsch, P., Structural Relaxation Made Simple. Physical review letters 2006, 97, 170201.
77. Curtis, F. E.; Que, X., A Quasi-Newton Algorithm for Nonconvex, Nonsmooth Optimization with Global Convergence Guarantees. Mathematical Programming Computation 2015, 7, 399-428.
78. van Lenthe, E.; Baerends, E.-J.; Snijders, J. G., Relativistic Total Energy Using Regular Approximations. The Journal of chemical physics 1994, 101, 9783-9792.
79. Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G., Improved Grid‐Based Algorithm for Bader Charge Allocation. Journal of computational chemistry 2007, 28, 899-908.
80. Li, R.; Zhang, J.; Hou, S.; Qian, Z.; Shen, Z.; Zhao, X.; Xue, Z., A Corrected Negf+ Dft Approach for Calculating Electronic Transport through Molecular Devices: Filling Bound States and Patching the Non-Equilibrium Integration. Chemical Physics 2007, 336, 127-135.
81. Verzijl, C.; Thijssen, J., Dft-Based Molecular Transport Implementation in Adf/Band. The Journal of Physical Chemistry C 2012, 116, 24393-24412.
82. Datta, S., Quantum Transport: Atom to Transistor; Cambridge university press, 2005.
83. Stokbro, K., First-Principles Modeling of Electron Transport. Journal of Physics: Condensed Matter 2008, 20, 064216.
84. Chen, T.-H.; Yoshida, M.; Tsunekawa, S.; Wu, J.-H.; Lin, K.-Y. A.; Hu, C., Development of Bioi as an Effective Photocatalyst for Oxygen Evolution Reaction under Simulated Solar Irradiation. Catalysis Science & Technology 2020, 10, 3223-3231.
85. Luévano-Hipólito, E.; Torres-Martínez, L.; Cantú-Castro, L., Self-Cleaning Coatings Based on Fly Ash and Bismuth-Photocatalysts: Bi2o3, Bi2o2co3, Bioi, Bivo4, Bipo4. Construction and Building Materials 2019, 220, 206-213.
86. Lu, J.; Wu, J.; Xu, W.; Cheng, H.; Qi, X.; Li, Q.; Zhang, Y.; Guan, Y.; Ling, Y.; Zhang, Z., Room Temperature Synthesis of Tetragonal Bioi Photocatalyst with Surface Heterojunction between (0 0 1) Facets and (1 1 0) Facets. Materials Letters 2018, 219, 260-264.
87. Ye, L.; Jin, X.; Ji, X.; Liu, C.; Su, Y.; Xie, H.; Liu, C., Facet-Dependent Photocatalytic Reduction of Co2 on Bioi Nanosheets. Chemical Engineering Journal 2016, 291, 39-46.
88. Ye, L.; Tian, L.; Peng, T.; Zan, L., Synthesis of Highly Symmetrical Bioi Single-Crystal Nanosheets and Their {001} Facet-Dependent Photoactivity. Journal of Materials Chemistry 2011, 21, 12479-12484.
89. Sharma, N.; Pap, Z.; Székely, I.; Focsan, M.; Karacs, G.; Nemeth, Z.; Garg, S.; Hernadi, K., Combination of Iodine-Deficient Bioi Phases in the Presence of Cnt to Enhance Photocatalytic Activity Towards Phenol Decomposition under Visible Light. Applied Surface Science 2021, 565, 150605.
90. Wang, X.; Zhou, C.; Yin, L.; Zhang, R.; Liu, G., Iodine-Deficient Bioi Nanosheets with Lowered Valence Band Maximum to Enable Visible Light Photocatalytic Activity. ACS Sustainable Chemistry & Engineering 2019, 7, 7900-7907.
91. Bai, J.; Li, Y.; Wei, P.; Liu, J.; Chen, W.; Liu, L., Enhancement of Photocatalytic Activity of Bi2o3–Bioi Composite Nanosheets through Vacancy Engineering. Small 2019, 15, 1900020.
92. Nosé, S., A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. The Journal of chemical physics 1984, 81, 511-519.
93. Kou, L.; Frauenheim, T.; Chen, C., Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I–V Response. The journal of physical chemistry letters 2014, 5, 2675-2681.
94. Li, S. S., Semiconductor Physical Electronics; Springer Science & Business Media, 2012.
95. Beheshtian, J.; Peyghan, A. A.; Bagheri, Z., Detection of Phosgene by Sc-Doped Bn Nanotubes: A Dft Study. Sensors and Actuators B: Chemical 2012, 171, 846-852.
96. Xiao, X.; Lin, Y.; Pan, B.; Fan, W.; Huang, Y., Photocatalytic Degradation of Methyl Orange by Bioi/Bi4o5i2 Microspheres under Visible Light Irradiation. Inorganic Chemistry Communications 2018, 93, 65-68.
97. Arana-Trenado, J. A.; Jayaraman, V. K.; Bizarro, M., Synthesis of (001) Oriented Bioi Thin Films by a Dual-Port Ultrasonic Spray Pyrolysis System. Materials Letters 2020, 269, 127655.
98. Kittel, C., Introduction to Solid State Physics Eighth Edition. 2021.
99. Liu, L.; Henrich, V. E.; Ellis, W.; Shindo, I., Bulk and Surface Electronic Structure of Li 2 O. Physical review B 1996, 54, 2236.
100. Shi, H.; Eglitis, R.; Borstel, G., First‐Principles Calculations of the Caf2 Bulk and Surface Electronic Structure. physica status solidi (b) 2005, 242, 2041-2050.
101. Mao, X.; Lang, X.; Wang, Z.; Hao, Q.; Wen, B.; Ren, Z.; Dai, D.; Zhou, C.; Liu, L.-M.; Yang, X., Band-Gap States of Tio2 (110): Major Contribution from Surface Defects. The Journal of Physical Chemistry Letters 2013, 4, 3839-3844.
102. Bacuyag, D.; Escaño, M. C. S.; David, M.; Tani, M., First-Principles Study of Structural, Electronic, and Optical Properties of Surface Defects in Gaas (001)-Β 2 (2x4). AIP Advances 2018, 8, 065012.
103. Croitoru, N.; Lazarescu, M.; Popescu, C.; Telnic, M.; Vescan, L., Ohmic and Non-Ohmic Conduction in Some Amorphous Semiconductors. Journal of Non-Crystalline Solids 1972, 8, 781-786.
104. Shokri, A.; Salami, N., Gas Sensor Based on Mos2 Monolayer. Sensors and Actuators B: Chemical 2016, 236, 378-385.
105. Ni, Z.; Zhong, H.; Jiang, X.; Quhe, R.; Luo, G.; Wang, Y.; Ye, M.; Yang, J.; Shi, J.; Lu, J., Tunable Band Gap and Doping Type in Silicene by Surface Adsorption: Towards Tunneling Transistors. Nanoscale 2014, 6, 7609-7618.
106. Gao, L.-K.; Tang, Y.-L., Theoretical Study on the Carrier Mobility and Optical Properties of Cspbi3 by Dft. ACS omega 2021, 6, 11545-11555.
107. Hilfiker, M.; Stokey, M.; Korlacki, R.; Kilic, U.; Galazka, Z.; Irmscher, K.; Zollner, S.; Schubert, M., Zinc Gallate Spinel Dielectric Function, Band-to-Band Transitions, and Γ-Point Effective Mass Parameters. Applied Physics Letters 2021, 118, 132102.
108. Linh, T. P. T.; Phu, N. D.; Van Hai, P.; Hoang, L. H., Improvement of Photocatalytic Activity of Bi2wo6 by Doping Ag and Y: A Dft Study. Journal of Electronic Materials 2021, 50, 4027-4033.
109. Pitt, I. G.; Gilbert, R. G.; Ryan, K. R., Application of Transition-State Theory to Gas-Surface Reactions: Barrierless Adsorption on Clean Surfaces. The Journal of Physical Chemistry 1994, 98, 13001-13010.
110. Zhang, Y.-H.; Chen, Y.-B.; Zhou, K.-G.; Liu, C.-H.; Zeng, J.; Zhang, H.-L.; Peng, Y., Improving Gas Sensing Properties of Graphene by Introducing Dopants and Defects: A First-Principles Study. Nanotechnology 2009, 20, 185504.
111. Wu, Y.; Chen, X.; Weng, K.; Jiang, J.; Ong, W. J.; Zhang, P.; Zhao, X.; Li, N., Highly Sensitive and Selective Gas Sensor Using Heteroatom Doping Graphdiyne: A Dft Study. Advanced Electronic Materials 2021, 7, 2001244.
112. Rajput, K.; Kumar, V.; Roy, D. R., Heterobilayer Cas/Case: A Promising Sensor for Environmental Toxic No2 Gas with High Selectivity and Sensitivity. Applied Surface Science 2020, 528, 146996.
113. Upadhyay, D.; Roondhe, B.; Pratap, A.; Jha, P. K., Two-Dimensional Delafossite Cobalt Oxyhydroxide as a Toxic Gas Sensor. Applied Surface Science 2019, 476, 198-204.
114. Cheng, M.-Q.; Chen, Q.; Yang, K.; Huang, W.-Q.; Hu, W.-Y.; Huang, G.-F., Penta-Graphene as a Potential Gas Sensor for Nox Detection. Nanoscale research letters 2019, 14, 1-8.
115. Wang, C.-C.; Wu, J.-Y.; Jiang, J.-C., Microkinetic Simulation of Temperature-Programmed Desorption. The Journal of Physical Chemistry C 2013, 117, 6136-6142.

無法下載圖示 全文公開日期 2024/08/17 (校內網路)
全文公開日期 2024/08/17 (校外網路)
全文公開日期 2024/08/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE