簡易檢索 / 詳目顯示

研究生: 薛煜霖
Yu-Lin Hsueh
論文名稱: 透過軟體定義無線電與虛擬化實作一個實驗的自我組織行動網路
Implementation of an Experimental Self-Organizing Mobile Network Using Virtualization and Software Defined Radio
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 沈上翔
Shan-Hsiang Shen
張世豪
Shih-Hao Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 24
中文關鍵詞: 自我組織網路集中式無線電接取網路虛擬化
外文關鍵詞: Self-Organizing Network, C-RAN, Virtualization
相關次數: 點閱:327下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了支持高數據傳輸,低延遲和許多場景的要求,第五代移動網絡應該具有可擴展性和靈活性。自組織網絡 SON (Self-organizing Network) 和虛擬化技術都是實現此問題的好方法。SON 提供自動配置、自動優化和自動修復,以減少人事及管理上的成本,並根據各設備的附載達到動態優化參數。虛擬化提供抽象、共享基礎設施和無線電資源。這兩個是通過降低基地台部署和維護成本來實現5G移動網絡的高效率和低延遲的關鍵。在本文中,我們通過使用通用軟體無線電外部設備 USRP (Universal Software Radio Peripheral) 硬體和開源軟體 OpenAirInterface 和開源容器技術 Docker 來實現廉價、節能和便攜的虛擬化及自我組織的 5G C-RAN (Cloud Radio Access Network)。平台包括分散式單元 DU (Distributed Unit)、集中單元 CU (Centralized Unit) 和核心網路 EPC (Evolved Packet Core Networks) 我們的設計比起傳統的基地台架構和未採用虛擬化的C-RAN架構在建構架設時間、參數設定時間表現上更加優秀並且擁有在平台出現錯誤或崩潰後有自我重啟、修復的能力。


    Aiming to support high data rate, low latency and requirements of many scenarios, the fifth-generation (5G) mobile network should be scalable and flexible. Both Self-Organizing Network (SON) and virtualization technology are good way to achieve this issue. SON provides an automatical configuration, optimization and healing. Virtualization provides abstracting, sharing of infrastructure and radio resources. These two are keys to reach high efficiency and low latency for 5G mobile network by reducing the cost of base station deployment and maintenance. In this article, we focus on virtualization and self-organizing by using Universal Software Radio Peripheral (USRP) hardware and OpenAirInterface, an open-source software, and open-source container technology Docker to implement an inexpensive, energy-saving and portable 5G cloud radio access network (C-RAN) platform including Distributed Unit (DU), Centralized Unit (CU) and Evolved Packed Network (EPC). Our design performs well than the traditional base station architecture and C-RAN without using virtualization in building time, configuration time and the ability of self-healing after crash.

    Chinese Abstract 1 Abstract 2 Table of Contents 3 List of Tables 4 List of Illustrations 5 1 Introduction 6 2 Related Work 9 2.1 Scenarios 9 2.2 C-RAN 10 3 SO-VCRAN (Self-organizing Virtulaized Cloud Radio Access Network) 14 3.1 SO-VCRAN 14 4 experiment 18 4.1 Experiment set up 18 5 Performance evaluation 20 5.1 Performance Evaluation of experiment 20 6 Conclusion 22 References 23

    [1] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris, V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5G on the Horizon: Key Challenges for the Radio-Access Network,” vol. 8, no. 3, pp. 47–53, July 2013.
    [2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, “What will 5G be?” vol. 32, no. 6, June 2014.
    [3] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancalepore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, et al., “Network Slicing to Enable Scalability and Flexibility in 5G Mobile Networks,” vol. 55, no. 5, pp. 72–79, May 2017.
    [4] K. Tsagkaris, G. Poulios, P. Demestichas, A. Tall, Z. Altman, and C. Destré, “An open framework for programmable, self-managed radio access networks,” vol. 53, no. 7, pp. 154–161, July 2015.
    [5] 3GPP TR 38.300 v15.1.0, “NR; Overall description; Stage-2,” Apr. 2018.
    [6] C-RAN. [Online]. Available: http://en.wikipedia.org/wiki/C-RAN
    [7] China Mobile Research Institute. The First C-RAN International Workshop. [Online]. Available: http://labs.chinamobile.com/focus/C-RAN
    [8] J. Opadere, Q. Liu, and T. Han, “Energy-Efficient RRH Sleep Mode for Virtual Radio Access Networks,” in GLOBECOM 2017-2017 IEEE Global Communications Conference, Dec. 2017, pp. 1–6.
    [9] F. Gringoli, P. Patras, C. Donato, P. Serrano, and Y. Grunenberger, “Performance assessment of open software platforms for 5g prototyping,” June 2018.
    [10] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and C. Bonnet, “OpenAirInterface: A flexible platform for 5G research,” in Proc. ACM SigComm, vol. 44, no. 5, Oct. 2014, pp. 33–38.
    [11] S. Costanzo, I. Fajjari, N. Aitsaadi, and R. Langar, “A network slicing prototype for a flexible cloud radio access network,” in Consumer Communications & Networking Conference (CCNC), 2018 15th IEEE Annual. IEEE, Jan. 2018, pp. 1–4.
    [12] M. Khan, R. S. Alhumaima, and H. S. Al-Raweshidy, “QoS-Aware Dynamic RRH Allocation in a Self-Optimized Cloud Radio Access Network With RRH Proximity Constraint,” Trans. Netw. Service Manag., vol. 14, no. 3, pp. 730–744, June 2017.
    [13] M. Khan, Z. H. Fakhri, and H. Al-Raweshidy, “Semistatic Cell Differentiation and Integration With Dynamic BBU-RRH Mapping in Cloud Radio Access Network,” Trans. Netw. Service Manag., vol. 15, no. 1, pp. 289–303, Nov. 2017.
    [14] X. Wang, C. Cavdar, L. Wang, M. Tornatore, H. S. Chung, H. H. Lee, S. M. Park, and B. Mukherjee, “Virtualized Cloud Radio Access Network for 5G Transport,” IEEE Communications Magazine, vol. 55, no. 9, pp. 202–209, 2017.
    [15] G. Tseliou, F. Adelantado, C. V. Verikoukis, et al., “Scalable RAN Virtualization in Multitenant LTE-A Heterogeneous Networks,” vol. 65, no. 8, pp. 6651–6664, Sept. 2015.
    [16] F. Giannone, H. Gupta, K. Kondepu, D. Manicone, A. Franklin, P. Castoldi, and L. Valcarenghi, “Impact of RAN Virtualization on Fronthaul Latency Budget: An Experimental Evaluation,” in Globecom Workshops (GC Wkshps), 2017 IEEE. IEEE, Dec. 2017, pp. 1–5.

    無法下載圖示 全文公開日期 2023/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE