簡易檢索 / 詳目顯示

研究生: 林侑達
YOU-DA LIN
論文名稱: 具隨機切換頻率之固定導通時間控制降壓型轉換器
A Constant on-time Control DC-DC Buck Converter with Random Switching Frequency
指導教授: 林景源
Jing-Yuan Lin
邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
黃仁宏
Peter Huang
劉邦榮
Pang-Jung Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 63
中文關鍵詞: 固定導通時間控制電磁干擾展頻調變降壓型轉換器
外文關鍵詞: Constant on-time control, Electromagnetic interference, Spread-spectrum modulation, Buck converter
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

由於切換式降壓型轉換器在輸入側容易會有過大的電磁干擾問題,本論文所提出的具隨機切換頻率之固定導通時間控制降壓型轉換器主要特色為在不增加外部元件的情況下,在控制端使用 展頻機制降低轉換器本身的電磁干擾。同時轉換器的功率級輸出電容可使用積層陶瓷電容,其低串聯等效電阻的特性可以降低輸出電壓漣波的大小且積層陶瓷電容比起電解質電容擁有體積小、良好的高頻響應、較長的使用壽命等等優點。本論文晶片採用TSMC 0.18μm 1P6M CMOS 製程實現包含內部核心電路與PADs之晶片面積為 1.2×1.15 mm2。輸入電壓範圍2.7~3.3 V以及輸出電壓為 1.8 V,負載電流範圍為50~700 mA,外接功率級電感與電容分別為3.3 μH與10 μF。量測結果顯示當負載電流變化為500 mA時,暫態回復時間約為5 μs,轉換器最高效率在200 mA為 94 %,最低效率在50 mA為87 %。


Since the switching buck converter is prone to excessive electromagnetic interference on the input side. The constant on-time controlled buck converter with random switching frequency proposed in this thesis is mainly characterized by not adding external components. In this case, the spread spectrum mechanism is used at the control end to reduce the electromagnetic interference of the converter itself. At the same time, the output capacitor of the converter can use a multilayer ceramic capacitor, and its low series equivalent resistance can reduce the output voltage ripple. Moreover, the multilayer ceramic capacitor has the advantages of small volume, good high frequency response, long service life and the like compared with the electrolytic capacitor. The chip had been implemented with TSMC 0.18-μm 1P6M CMOS technology and its chip size including pads was 1.2×1.15 mm2. The input voltage range is 2.7~3.3 V and the output voltage is 1.8 V. The load current range is 50~700 mA. The external power stage inductance and capacitance are 3.3 μH and 10 μF respectively. The measurement results show that when the load current changes to 500 mA, the transient recovery time is about 5 μs, the maximum efficiency of the converter is 94 % at 200 mA, and the lowest efficiency is 87 % at 50 mA

摘 要 Abstract 誌 謝 目 錄 圖目錄 表目錄 第一章 緒 論 1.1研究動機與目的 1.2論文大綱 第二章 固定導通時間與隨機切換頻率之原理與分析 2.1固定導通時間控制之動作與穩定分析 2.2電感DCR電流偵測之穩定度補償 2.3直流降壓型轉換器之電磁干擾討論 2.4隨機切換頻率之展頻策略 2.4.1偽隨機亂數展頻機制 2.4.2三角波擾動展頻機制 第三章 本論文所提降壓型轉換器之設計與實現 3.1系統整體架構簡介 3.2內部電路設計 3.2.1固定導通時間與電感DCR電流偵測之電路 3.2.2偽隨機亂數展頻與三角波擾動展頻機制之電路 3.2.3轉導放大器之電路 第四章 模擬結果 4.1本論文所提降壓型轉換器之模擬波形 4.2 模擬結果比較與討論 第五章 晶片量測結果 5.1 晶片佈局圖 5.2 晶片腳位配置與定義 5.3 晶片量測結果 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻 47

[1] Abraham I. Pressman, Keith Billings, Taylor Morey, Switching Power Supply Design. McGraw-Hill Companies, 2009 3nd.
[2] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics.Norwell, MA: Kluwer Academic, 2001 2nd.
[3] Daniel W. Hart, Power Electronics. McGraw-Hill, 2010 1nd.
[4] R. Redl and J. Sun, “Ripple-based control of switching regulators-An overview,” IEEE Trans. Power Electron., vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[5] Y. Lin, C. Chen, D. Chen and B. Wang, "A Ripple-Based Constant On-Time Control With Virtual Inductor Current and Offset Cancellation for DC Power Converters," in IEEE Transactions on Power Electronics, vol. 27, no. 10, pp. 4301-4310, Oct. 2012.
[6] W. Chen, J. Chen, T. Liang, L. Wei, J. Huang and W. Ting, "A Novel Quick Response of RBCOT With VIC Ripple for Buck Converter," in IEEE Transactions on Power Electronics, vol. 28, no. 9, pp. 4299-4307, Sept. 2013.
[7] C. Li, H. Chiu, Y. Lo and C. Wang, "Adaptive on-time control with adjustable virtual ripple and offset cancellation for buck converter," IET Power Electronics, vol. 8, no. 12, pp. 2418-2428, 12 2015.
[8] C. Chen, D. Chen, C. Tseng, C. Tseng, Y. Chang and K. Wang, "A novel ripple-based constant on-time control with virtual inductor current ripple for Buck converter with ceramic output capacitors," 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, 2011, pp. 1488-1493.
[9] Roland van Roy,消除Buck轉換器中的 EMI問題,立錡科技股份有限公司,2016年。
[10] M. Nashed and A. A. Fayed, "Current-Mode Hysteretic Buck Converter With Spur-Free Control for Variable Switching Noise Mitigation," IEEE Transactions on Power Electronics, vol. 33, no. 1, pp. 650-664, Jan. 2018.
[11] Jinping Wang, Jianping Xu, and Bocheng Bao, “Analysis of pulse bursting phenomenon in constant-on-time-controlled buck converter,” IEEE Trans. Industrial Electronics., vol. 58, no. 12, pp. 5406-5410, Dec. 2011.
[12] Ting Qian, “Subharmonic analysis for buck converters with constant on-time control and ramp compensation,” IEEE Trans. Industrial Electronics., vol. 60, no. 5, pp. 1780-1786, May. 2013.
[13] T. Qian and W. Wu, "Analysis of the ramp compensation approaches to improve stability for buck converters with constant on-time control," IET Power Electronics, vol. 5, no. 2, pp. 196-204, Feb. 2012.
[14] S. Pan, C. Chen and C. Tsai, "A Novel Capacitor Current Constant on-Time Controlled Buck Converter at 4-MHz Switching Frequency," 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, 2018, pp. 6008-6013.
[15] R. Wang, Z. Lin, J. Du, J. Wu and X. He, "Direct Sequence Spread Spectrum-Based PWM Strategy for Harmonic Reduction and Communication," IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4455-4465, June 2017.
[16] P. Lezynski, "Random Modulation in Inverters With Respect to Electromagnetic Compatibility and Power Quality," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 2, pp. 782-790, June 2018.
[17] J. Chen, Y. Hwang, C. Jheng, Y. Ku and C. Yu, "A Low-Electromagnetic-Interference Buck Converter With Continuous-Time Delta-Sigma-Modulation and Burst-Mode Techniques," IEEE Transactions on Industrial Electronics, vol. 65, no. 9, pp. 6860-6869, Sept. 2018.
[18] Y. Park et al., "A Design of a 92.4% Efficiency Triple Mode Control DC–DC Buck Converter With Low Power Retention Mode and Adaptive Zero Current Detector for IoT/Wearable Applications," in IEEE Transactions on Power Electronics, vol. 32, no. 9, pp. 6946-6960, Sept. 2017.
[19] R. Redl and J. Sun, "Ripple-Based Control of Switching Regulators—An Overview," IEEE Transactions on Power Electronics, vol. 24, no. 12, pp. 2669-2680, Dec. 2009.
[20] H. Li, C. Pao, B. Chen and C. Tsai, "AOT-controlled dual-mode AVP buck regulator with AEAF mechanism," Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, San Jose, CA, 2013, pp. 1-4.
[21] Y. Du, Q. Liu and A. Q. Huang, "A monolithic CMOS synchronous Buck converter with a fast and low-cost current sensing scheme," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 1849-1856.

無法下載圖示 全文公開日期 2024/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE