簡易檢索 / 詳目顯示

研究生: 張資鑑
Zi-Jain Zhang
論文名稱: 利用柱狀透鏡陣列開發直下式背光模組準直面光源
Utilizing lenticular lens array for collimated and planar light source development on direct lit backlight modul
指導教授: 林鼎晸
Ding-Zheng Lin
口試委員: 鄭正元
Jeng-Ywan Jeng
李宗憲
Tsung-Xian Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 110
中文關鍵詞: 準直膜直下式準直背光模組柱狀透鏡陣列
外文關鍵詞: collimation film, collimated direct lit backlight module, lenticular lens arrays
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 積層製造具有巨大潛力製造傳統加工技術無法輕易達成的複雜結構。最近,許多公司開發基於液晶顯示的高性價比3D列印系統。然而,列印物的解析度和均勻度對於微光學元件和微流控晶片等精密應用來說還不夠。在本文中,我們提出兩種光學結構來增強405nm LED背光模組的準直性和均勻性。此結構被命名為準直膜(Collimation Film,CF),此膜片的設計是基於柱狀透鏡陣列。第一種準直膜稱為單面結構準直膜(Single-Sided Structure Collimation Film,SSSCF),是由柱狀透鏡陣列、針孔和高反射鍍膜所組成。柱狀透鏡陣列搭配針孔可將發散的入射光的角度收斂成準直光出射。準直膜的高反射率鍍膜可以將沒有進入針孔的光再次反射回背光模組中進行能量再循環。單面結構準直膜的透射特性是半峰全寬為±3.4°的準直光。第二種準直膜稱為雙面結構準直膜(Double-Sided Structure Collimation Film,DSSCF),由柱狀透鏡陣列、梯形微結構、針孔和反射鍍膜組成。與單面結構準直膜相比,雙面結構準直膜有梯形微結構,此梯形微結構可以反射來自背光的大角度的光成小角度的光出射。因為梯形微結構的存在,雙面結構準直膜不會形成大角度的漏光。最後,我們成功地開發了一種具有低吸收特性的直下式準直背光模組,具有良好的能量增益(Gain=5.6)、均勻性(Uniformity=81.4%)和準直面光源特性(FWHM<±5.5°)。本研究開發的準直背光模組未來有大的應用潛力,包括需要高精細度的3D列印機、高對比或窄視角的液晶顯示器、及用於精密機器視覺系統中的遠心照明裝置等。


    Additive manufacturing has great potential to fabricate complex structures that tradi-tional machining techniques can’t easily achieve. Recently, cost-effective 3D printing systems based on liquid crystal display (LCD) have been developed by many companies. However, the resolution and uniformity of the printing objects are not good enough for del-icate applications, such as micro-optics devices and microfluidic chips. In this article, we proposed two kinds of novel optical structures to enhance the collimation and uniformity property of the 405nm light-emitting diode (LED) backlight. The structured film is named a collimation film (CF), the design of which is based on lenticular lens arrays. The first kind of CF is called single-sided structure collimation film (SSSCF), which is composed of lenticular lens arrays, apertures, and reflective coating. Lenticular lens arrays accompa-nied by the apertures transform the diverse incoming light into collimation outgoing light. The reflection coating of CF can reflect light that does not enter the aperture to the back-light module again for energy recycling. The transmission property of the SSSCF is a col-limated light, which is ±3.4° full width at half maximum (FWHM) of beam divergence an-gle. The second kind of CF is called double-sided structure collimation film (DSSCF), which is composed of lenticular lens arrays, trapezoidal microstructure, apertures, and re-flective coating. Compared with SSSCF, DSSCF has trapezoidal microstructures that can reflect the light of large angles coming from the backlight to the light of small angles. Because of the trapezoidal microstructures, there is no large angle leakage light from DSSCF. Finally, we successfully developed a high efficiency direct-lit collimated back-light module, which presents high energy gain (Gain=5.6), good uniformity (Uniformi-ty=81.4%), and good collimation properties (FWHM<±5.5°). The collimation backlight module has great application potential, such as high precision 3D printer, high contrast or narrow viewing angle LCD, and telecentric illumination device for high accuracy machine vision system.

    摘要 1 Abstract 2 誌謝 3 目錄 4 圖目錄 7 表目錄 12 第1章 緒論 13 1-1 前言 13 1-2 研究動機 13 1-3 研究方法和研究目標 14 1-3-1 研究方法 14 1-3-2 研究目標 15 1-4 論文架構 16 第2章 文獻回顧 17 2-1 光聚合固化成型技術介紹 17 2-1-1 SLA光聚合固化技術簡介 17 2-1-2 DLP光聚合固化技術簡介 18 2-1-3 LCD光聚合固化技術簡介 19 2-2 LCD光聚合固化技術相關文獻 19 2-2-1 直下式背光模組在LCD 3D列印機的應用現況 19 2-2-1-1 單顆高能量LED背光模組 20 2-2-1-2 LED陣列光源背光模組 21 2-2-2 側入式背光模組在3D列印機的發展現況 22 2-2-3 有潛力應用在LCD光聚合固化的技術 23 2-2-4 LCD光聚合固化技術的挑戰 23 2-3 準直背光模組相關文獻 25 2-3-1 側入式準直背光模組發展現況 25 2-3-1-1 微結構膜形成準直背光模組 26 2-3-1-2 微結構導光板形成準直背光模組 27 2-3-1-3 微結構導光板與微結構膜搭配形成準直背光模組 28 2-3-2 直下式準直背光模組發展現況 30 2-4 準直膜相關文獻 31 2-4-1 遮蔽式微結構膜 31 2-4-2 折射式微結構膜 33 2-5 準直膜製作相關文獻 34 2-6 研究概念的來源 36 第3章 基本原理與研究概念 37 3-1 基本物理量 37 3-2 光學原理 37 3-3 模擬軟體(Tracepro)介紹 39 3-4 增亮膜(BEF)介紹 41 3-5 準直膜介紹 42 3-5-1 準直膜原理 42 3-5-2 準直膜通用參數介紹 44 3-5-3 單面結構準直膜專用參數 45 3-5-4 雙面結構準直膜專用參數 45 3-6 背光模組的特性定義 46 3-6-1 配光曲線相關參數定義 46 3-6-2 能量相關參數定義 47 3-7 實驗設備與耗材 47 第4章 準直膜設計 53 4-1 準直膜模擬設定 53 4-2 單面結構準直膜 53 4-2-1 厚度的影響 54 4-2-2 半圓心角的影響 55 4-2-3 開口率的影響 57 4-2-4 兩片單面結構準直膜 59 4-2-4-1 使用兩片單面結構準直膜的背光模組 59 4-2-4-2 低強度大角度漏光的單面結構準直膜 60 4-2-4-3 使用兩片單面結構準直膜的影響 61 4-2-4-4 x方向的配光曲線被破壞的原因 62 4-2-4-5 兩片SSSCF正交疊合時0度光強減少的原因 62 4-2-5 擴散膜吸收率的影響 63 4-2-6 反射鍍膜反射率的影響 64 4-2-6 不同位置的配光曲線 64 4-2-7 單面結構準直膜的準直背光模組與對照組比較 65 4-3 雙面結構準直膜 67 4-3-1 在不同開口率下微結構高度的影響 67 4-3-2 在不同半圓心角下微結構高度的影響 69 4-3-3 微結構角度的影響 71 4-3-4 兩片雙面結構準直膜 72 4-3-4-1 無大角度漏光的雙面結構準直膜 72 4-3-4-2 使用兩片雙面結構準直膜的影響 73 4-3-4-3 兩片DSSCF正交疊合時0度光強增加的原因 74 4-3-5 不同位置的配光曲線 74 4-3-6 雙面結構準直膜的準直背光模組與對照組比較 75 4-4 複合準直膜 77 4-4-1 複合準直膜模擬設定 77 4-4-2 背光模組的特性改變 77 4-4-3 不同位置的配光曲線 79 4-5 應用在LCD 3D列印機的評估 79 第5章 樣品製作 81 5-1 單面結構準直膜 81 5-1-1 樣品製作 81 5-1-2 實驗與模擬比較 83 5-2 雙面結構準直膜 84 5-2-1 樣品製作流程 85 5-2-2 實驗與模擬比較 88 第6章 結論與未來展望 90 6-1 結論 90 6-2 未來展望 91 附錄A 光束發散角半高寬在LCD 3D列印機的選擇 92 附錄B 模擬設定 94 B-1 背光模組模型配置 94 B-2 擴散膜 95 B-3 內壁(wall) 95 B-4 LED陣列 96 B-5 光線數 97 B-6 停止計算閥值 97 B-7 膜片位置的影響 98 附錄C 準直膜模擬對照組 99 C-1 稜鏡膜模組 99 C-2 防窺片模組 99 附錄D 變角光度計 100 附錄E 研究資料統整 102 參考文獻 104 作者簡歷 107

    1. "Anycubic," https://www.anycubic.com/collections/3d-printers.
    2. "Feasun," https://www.feasun3d.com/product-category/lcd-3d-printer/.
    3. "Phrozen," https://phrozen3d.com.tw/collections/printers?view=all.
    4. D.-Z. Lin, C.-M. Lee, Z.-J. Zhang, P.-H. Yu, and J.-Y. Jeng, "Development of a qua-si-collimated UV LED backlight for producing uniform and smooth 3D printing ob-jects," Opt. Express 30(9), 14759 (2022).
    5. Ben Redwood, Filemon Schöffer, and Brian Garret, The 3D Printing Handbook_ Technologies, Design and Applications-3D Hubs (2017).
    6. elegoo, "ELEGOO MARS 2 PRO VS THE ORIGINAL MARS, WHAT ARE THE UP-GRADES?," (2020).
    7. phrozen, "Sonic Mini 8K - The Most #EPIC8K Resolution 3D printer," (2021).
    8. 巫昆達, "高速UV LCD光固化3D列印系統開發之研究," 國立臺灣科技大學 (2019).
    9. 游秉閎, "大面積LCD可見光光固化積層製造系統背光模組開發設計與製作研究," 碩士論文, 國立臺灣科技大學 (2021).
    10. E. H. A. Langendijk, R. Muijs, and W. van Beek, "Contrast gain and power savings us-ing local dimming backlights," J. Soc. Inf. Disp. 16(12), 1237 (2008).
    11. A. Anggorosesar and Y.-J. Kim, "Object-based local dimming for LCD systems with LED BLUs," in IEEE/ACM International Symposium on Low Power Electronics and Design (IEEE, 2011), pp. 315–320.
    12. S.-E. Kim, J.-Y. An, J.-J. Hong, T. W. Lee, C. G. Kim, and W.-J. Song, "How to reduce light leakage and clipping in local-dimming liquid-crystal displays," J. Soc. Inf. Disp. 17(12), 1051 (2009).
    13. H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, "Photo-curing 3D printing tech-nique and its challenges," Bioact. Mater. 5(1), 110–115 (2020).
    14. J. Chen, W. Cranton, and M. Fihn, eds., Handbook of Visual Display Technology (Springer International Publishing, 2016).
    15. H. Ong, O. Woodard, N. Cheong, K. Zhang, F. Herrmann, M. Metras, and C. Reese, "A normally black, high contrast, wide symmetrical viewing angle AMLCD for military Head Mounted Displays (HMDs) and other viewer applications," in R. W. Brown, P. L. Marasco, C. E. Rash, and C. E. Reese, eds. (2006), p. 62240Q.
    16. T.-C. Teng and J.-C. Ke, "A novel optical film to provide a highly collimated planar light source," Opt. Express 21(18), 21444 (2013).
    17. M. Jakubowsky, J. Werder, C. Rytka, P. M. Kristiansen, and A. Neyer, "Design, manu-facturing and experimental validation of a bonded dual-component microstructured system for vertical light emission," Microsyst. Technol. 26(6), 2087–2093 (2020).
    18. B.-L. Huang and T.-L. Guo, "Integrated backlight module to provide a collimated and uniform planar light source," Appl. Opt. 55(26), 7307 (2016).
    19. B.-L. Huang, J. Lin, Y. Ye, S. Xu, E. Chen, and T.-L. Guo, "Pattern optimization of compound optical film for uniformity improvement in liquid-crystal displays," Opt. Laser Technol. 97, 254–259 (2017).
    20. Tomohiro Ishikawa and Xiang-Dong Mi, "New Design for a Highly Collimating Turn-ing Film," SIDs Dig. Tech. Pap. Lay Technol. Volume 37, Pages 514-517 (2006).
    21. T.-C. Teng and W.-C. Lai, "Optimization of an Optical Film for Highly Collimating the Emerging Light," J. Disp. Technol. 11(4), 386–394 (2015).
    22. J.-W. Pan and Y.-W. Hu, "Design of a Hybrid Light Guiding Plate With High Lumi-nance for Backlight System Application," J. Disp. Technol. 9(12), 965–971 (2013).
    23. J. Yeon, J.-H. Lee, H.-S. Lee, H. Song, Y.-K. Mun, Y.-S. Choi, H.-Y. Choi, S. Lee, and J.-B. Yoon, "An effective light-extracting microstructure for a single-sheet backlight unit for liquid crystal display," J. Micromechanics Microengineering 22(9), 095006 (2012).
    24. P. Xu, T. Luo, X. Zhang, Z. Su, Y. Huang, X. Li, and Y. Zou, "Design and optimization of a partial integrated backlight module," Opt. Commun. 427, 589–595 (2018).
    25. R. Zhang, "Directional backlighting system using a light guide with paired micro-structures," Appl. Opt. 56(24), 6735 (2017).
    26. B.-T. Chen and J.-W. Pan, "Dual-view angle backlight module design," Appl. Opt. 54(28), E80 (2015).
    27. D. Feng, G. Jin, Y. Yan, and S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85(24), 6016–6018 (2004).
    28. T. Okumura, A. Tagaya, and Y. Koike, "Highly-efficient backlight for liquid crystal display having no optical films," 4 (2003).
    29. S. Aoyama, A. Funamoto, and K. Imanaka, "Hybrid normal-reverse prism coupler for light-emitting diode backlight systems," Appl. Opt. 45(28), 7273 (2006).
    30. D. Grabovičkić, P. Benítez, J. C. Miñano, and J. Chaves, "LED backlight designs with the flow-line method," Opt. Express 20(S1), A62 (2012).
    31. J.-H. Lee, H.-S. Lee, B.-K. Lee, W.-S. Choi, H.-Y. Choi, and J.-B. Yoon, "Simple liquid crystal display backlight unit comprising only a single-sheet micropatterned polydi-methylsiloxane (PDMS) light-guide plate," Opt. Lett. 32(18), 2665 (2007).
    32. Y.-J. Wang, S.-H. Ouyang, W.-C. Chao, J.-G. Lu, and H.-P. D. Shieh, "High directional backlight using an integrated light guide plate," Opt. Express 23(2), 1567 (2015).
    33. Y.-J. Wang, J.-G. Lu, W.-C. Chao, and H.-P. D. Shieh, "Switchable viewing angle dis-play with a compact directional backlight and striped diffuser," Opt. Express 23(16), 21443 (2015).
    34. Y. Zhang, D. Yi, W. Qiao, and L. Chen, "Directional backlight module based on pixe-lated nano-gratings," Opt. Commun. 459, 125034 (2020).
    35. M. Isshiki, Y. Arai, M. Inoue, T. Sasaki, and K. Käläntär, "14-2: Monolithic Glass Light-Guide Plate with Built-in Prism Structure for 1D Dimming Large-Area LCD," SID Symp. Dig. Tech. Pap. 49(1), 149–152 (2018).
    36. J.-W. Pan and C.-W. Fan, "High luminance hybrid light guide plate for backlight mod-ule application," Opt. Express 19(21), 20079 (2011).
    37. B.-T. Chen and J.-W. Pan, "High-efficiency directional backlight design for an auto-motive display," Appl. Opt. 57(16), 4386 (2018).
    38. K. Käläntär, "A directional backlight with narrow angular luminance distribution for widening the viewing angle for an LCD with a front-surface light-scattering film," J. Soc. Inf. Disp. 20(3), 133 (2012).
    39. L. Zhou, G.-L. Bai, X. Guo, S. Shen, Q.-D. Ou, and Y.-Y. Fan, "Light beam shaping for collimated emission from white organic light-emitting diodes using customized len-ticular microlens arrays structure," Appl. Phys. Lett. 112(20), 201902 (2018).
    40. G. E. Gaides, I. A. Kadoma, C. Grove, and D. B. Olson, "(54) LIGHT-COLLIMATING FILM," U.S. patent US8012567B2 (2011).
    41. H. Lee, S. G. Heo, Y. Bae, H. Lee, J. Kim, and H. Yoon, "Multiple guidance of light using asymmetric micro prism arrays for privacy protection of device displays," Opt. Express 29(2), 2884 (2021).
    42. Lorne A. Whitehead, "Lighting panel with opposed 45° corrugations," U.S. patent US4542449 (1985).
    43. B.-Y. Joo and D.-H. Shin, "Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight," Displays 31(2), 87–92 (2010).
    44. A. Kanemitsu, T. Sakamoto, and H. Iyama, "Light Diffuser Plates for LCD-TV Back-light Systems," 10 (2007).
    45. J. F. Munro, "(54) METHOD AND APPARATUS FOR APERTURE SCULPTING IN A MICROLENS ARRAY FILM," 31 (2010).
    46. 柯兆謙, "具有雙面結構之高準直光學膜片設計," 國立臺灣師範大學 (2013).
    47. B.E.A. Saleh and M.C. Teich, FUNDAMENTALS OF PHOTONICS (WILEY, 2019).
    48. "Bidirectional scattering distribution function," https://en.wikipedia.org/wiki/Bidirectional_scattering_distribution_function.
    49. "LAMBDA RESEARCH CORPORATION," https://www.lambdares.com.tw/.
    50. TracPro User’s Manual (LAMBDA RESEARCH CORPORATION, 2022).
    51. Frank L Pedrotti, Leno M Pedrotti, and Leno S Pedrotti, Introduction to Optics (Addi-son-Wesley, 2017).
    52. G. Boyd, "7.5.2 Optical Enhancement Films," 22 (2012).
    53. "RefractiveIndex.INFO," https://refractiveindex.info/?shelf=organic&book=polyethylene_terephthalate&page=Zhang.
    54. "富敦科技," https://www.yongtek.com/tw/index.html.
    55. "金穎實業股份有限公司," http://www.goldwise.com.tw/diffusion-film.html.
    56. "3M公司," https://www.3m.com.tw/3M/zh_TW/company-tw/.

    無法下載圖示 全文公開日期 2026/08/22 (校內網路)
    全文公開日期 2026/08/22 (校外網路)
    全文公開日期 2026/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE