簡易檢索 / 詳目顯示

研究生: 劉立文
Li-Wen Liu
論文名稱: 地板與鞋底紋路設計對鞋底與地板間抗滑性之影響
Effects of Tread Groove Design of Floor and Shoe Sole on the Slip Resistance at Footwear-Floor Interface
指導教授: 林久翔
Chiuhsiang Joe Lin
李永輝
Yung-Hui Lee
口試委員: 李開偉
Kai Way Li
陳振昇
Chen-Sheng Chen
石裕川
YUH-CHUAN SHIH
陳協慶
Hsieh-ching Chen
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 65
中文關鍵詞: 滑倒摩擦係數步態鞋地介面紋路
外文關鍵詞: slips and falls, coefficient of friction, gait, shoe-floor interface, tread
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

滑倒是生活與職場中常見的意外,影響滑倒的因素包含鞋底、地板、步態等。鞋底和地板的抗滑性是影響滑倒風險的主要因素。鞋底的紋路設計、地板上的污染物、及地面的坡度都會影響鞋底與地板間的抗滑性,步態平衡也會影響滑倒產生的可能。本研究以地板抗滑性量測與步態實驗來探討鞋材與地板紋路設計對滑倒風險之影響。
地板抗滑性量測是在不同鞋材、地板、地面污染、與地表坡度的狀況下,以不同紋路之鞋材於不同紋路地板上以Brungraber Mark II摩擦係數量測器來測量地板抗滑性。結果顯示,鞋材、地板、地面污染、與地面坡度等四個因子對於地板摩擦係數的影響的均達顯著水準(p<0.0001)。在濕地板上,無紋鞋材的摩擦係數值顯著的高於有紋路的鞋材。但是在油地板上,無紋路鞋材跟無紋路地板的摩擦係數值最低。不論在溼地板或油地板上,具有與摩擦測試方向垂直紋路的地板,摩擦係數值最高。
步態實驗則以兩種不同紋路鞋底與三種不同紋路地板進行。受測者在測試步道上行走並踏過塗甘油之地板區域,並記錄受測者腳在地板之滑動狀態。研究發現當鞋底與地板都具有與行進方向垂直的紋路時的地板摩擦係數最大、腳踏上地板時滑行距離最短、受測者的滑倒百分比最低;當鞋底與地板都具有與行進方向平行的紋路時地板摩擦係數最小、腳踏上地板時滑行距離最長、受測者滑倒的百分比最高。


Slip and fall incidents are common both at work and in our daily life. The slip resistance between shoe sole and floor are the primary factor affecting the risk of slip and fall. Tread groove pattern on the shoe sole, contaminant on the floor, and slope of floor surface could all affect the slip resistance between shoe sole and floor. Balance of gait affects coefficient of friction at the footwear and floor interface. This study investigates the effects of tread grooves of both shoe sole and floor on the risk of slip and fall.
Friction measurements were conducted to study the effects of shoe sole material, floor, contamination, and slope of the floor surface on the slip resistance of floor using the Brungraber Mark II slipmeter. The results showed that shoe sole material, floor, floor contamination, and slope of floor all affected the slip resistance of floor significantly (p<0.0001). On wet surfaces, the slip resistances of flat shoe soles were significantly higher than those of the treaded shoe soles. On oily surfaces, the flat shoe sole and flat floor combination had the lowest slip resistance. On both wet and oily surfaces, floors with tread grooves perpendicular to measurement direction had the highest slip resistance.
A gait experiment was conducted under two shoe sole tread designs and three floor profile conditions. The subject walked on a walkway and stepped on a glycerol contaminated surface. The foot sliding condition was recorded. It was found that the friction coefficient at footwear-floor interface was the highest when both the shoe sole and floor had treads perpendicular to the walking direction. This condition was associated with short slip distance of the foot, and low slip percentage. The friction coefficient at footwear-floor interface was the lowest when both the shoe sole and floor had treads parallel to the walking direction. This condition was associated with long slip distance of the foot, and high slip percentage.

中文摘要 I Abstract II 誌謝 III Contents IV List of Figs VI List of Tables VII Chapter 1. Introduction 1 1.1 Study Motivation 1 1.2 Study Framework and Objectives 2 1.3 Study Limitataions 3 Chapter 2. Literature Review 4 2.1 Friction and slip 4 2.2 Friction measurement devices 7 2.3 Roughness and contaminant on the surface of shoe sole and floor 9 2.4 Slip Gait factors 14 Chapter 3. Friction Measurement 21 3.1 Method 21 3.1.1 Slipmeter 21 3.1.2 Inclined angle of the floors 22 3.1.3 Floors, footwear, and contamination conditions 22 3.1.4 Experimental design and statistical analyses 26 3.2 Results 27 3.2.1 ANOVA Results 27 3.2.2 Regression model 31 3.3 Disscussion 36 Chapter 4. Gait Experiment 39 4.1 Methods 39 4.1.1 Human subjects 39 4.1.2 Experimental setup 39 4.1.3 Floors and footwear conditions 41 4.1.4 Tempo-spatial variables 44 4.1.5 Experiment procedure 45 4.1.6 Experiment design and Data analysis 46 4.2 Results 47 4.2.1 COF on the floor 47 4.2.2 ANOVA results of the tempo-spatial variables 48 4.2.3 Slip and fall outcomes of trials 51 4.3 Discussion 54 Chapter 5. Conclusions 57 參考文獻 58 Appendix 65

[1]Leamon, T. B., Murphy, P. L., “Occupational slips and falls: more than a trivial problem ” , Ergonomics, Vol.38( 3), pp. 487-498 (1995).
[2]Health and Safety Executive, HSE, (20011/12) Fatal Injury Statistics, http://www.hse.gov.uk/statistics/fatals.htm
[3]Washington State Department of Labor and Industries, Sharp Focus: falls on the same level. Technical Report 59-1-2004. http://www.lni.wa.gov/Safety/Research/files/FallSameLevel.pdf (2004).
[4]Liberty Mutual Research Institute for Safety, 2010 workplace safety index [online]. Available from: http://www.libertymutual.com/researchinstitute. From Research to Reality, 13 (3) (2010).
[5]Liberty Mutual Research Institute for Safety, 2011 Workplace Safety Index, available at http://www.libertymutual.com/researchinstitute. From Research to Reality,14(3)( 2011).
[6]Courtney, T. K., Sorock, G. S., Manning, D. P., Collins, J. W., Holbein-Jenny, M. A., “Occupational slip, trip, and fall-related injuries - can the contribution of slipperiness be isolated? ”, Ergonomics, Vol.44 (13), pp.1118-1137(2001).
[7]Council of Labor Affairs (2008) Annual report of labor inspection. Taipei, Taiwan.
[8]Council of Labor Affairs (2009) Annual report of labor inspection. Taipei, Taiwan.
[9]Council of Labor Affairs (2010) Annual report of labor inspection. Taipei, Taiwan.
[10]Council of Labor Affairs (2011) Annual report of labor inspection. Taipei, Taiwan.
[11]Council of Labor Affairs (2012) Annual report of labor inspection. Taipei, Taiwan.
[12]Bureau of Health, 2008. Bureau of Health Promotion Annual Report, Department of Health, Executive Yuan, Taiwan.
[13]Oliver, D., Healey, F., Haines, T. P., “Preventing falls and fall-related injuries in hospitals”, Clinics in Geriatric Medicine,Vol.26(4), pp.645-692( 2010).
[14]Cham, R., Redfern, M. S.,“Heel contact dynamics during slip events on level and inclined surfaces”, Safety Science, Vol.40(7-8), pp.559-576(2002).
[15]Hanson, J. P., Redfern, M. S., Mazumdar, M., “Predicting slips and falls considering required and available friction”, Ergonomics, Vol. 42(12), pp.1619–1633(1999).
[16]Moyer, B. E., Chambers, A. J., Cham, R., Redfern, M. S., “Gait parameters as predictors of slip severity in younger and older adults”, Ergonomics, Vol.49(4), pp.329–343 (2006).
[17]McGorry, R. W., DiDomenico, A., Chang, C. C., “The anatomy of a slip: kinetic and kinematic characteristics of slip and non-slip matched trials”,Applied Ergonomics,Vol.41(1), pp.41-46 (2010).
[18]Tamika, L., Heidena, D. J., Sandersona, B. J., Timothy, I. B., Gunter, P.,“Adaptations to normal human gait on potentially slippery surfaces: The effects of awareness and prior slip experience”, Gait & Posture, Vol.24 (2), pp.237–246 (2006).
[19]Strandberg, L., Lanshammar, H., “The dynamics of slipping accidents”,Journal of Occupational Accidents, Vol. 3(3), pp. 153–162 (1981).
[20]Manning, D. P., “Deaths and injuries caused by slipping, tripping and falling”, Ergonomics,Vol.26(1),pp.3–9,(1983).
[21]Tisserand, M., “Progress in the prevention of falls caused by slipping”, Ergonomics,Vol.28(7)pp.1027–1042( 1985).
[22]Gronqvist, R., Abeysekera, J., Gard, G., Hsiang, S. M., Leamon, T. B., “Human-centered approaches in slipperiness measurement”Ergonomics,Vol.44(13), pp.1167–1199 (2001).
[23]Ekkubus, C. F., Killey, W., “Validity of 0.5 static coefficient of friction (James Machine) as a measure of safe walkway surfaces” Soap/Cosmetics/Chemical Specialties,Vol.49 (2), pp.40–45 (1973).
[24]Pilla, D.S., “Slip and Fall Prevention: A Practical Handbook. Lewis Publishers”, USA. (2003).
[25]Tisserand, M., “Progress in the prevention of falls caused by slipping”, Ergonomics, Vol.28(7), pp.1027-1042(1985)..
[26]Yamaguchi, T., Hokkirigawa, K.,“‘Walking-Mode Maps’ based on slip/non-slip criteria”, Industrial Health,Vol.46, pp. 23–31(2008).
[27]Perkins, P.J., Wilson, M.P., “Slip resistance of testing footwears–new developments”, Ergonomics, Vol.26(1), pp.73–82 (1983).
[28]Perkins, P. J.,“Measurement of slip between the shoe and ground during walking”, ASTM STP 649. ASTM Philadelphia, PA(1978).
[29]Strandberg, L., “On accident analysis and slip-resistance measurement”, Ergonomics Vol.26(1),pp.11–32(1983).
[30]Gronqvist, R., Roine, J., Jarvinen, E., Korhonen, E., “An apparatus and a method for determining the slip resistance of shoes and floors by simulation of human foot motions”, Ergonomics, Vol.32 (8), pp.979–995 (1989).
[31]Whittle, M., Gait Analysis An Introduction 4Ed., Butterworth-Heinemann,pp.52-56(2007).
[32]Burnfield, J. M.,, Tsaib, Y. J., Powers C. M., “Comparison of utilized coefficient of friction during different walking tasks in persons with and without a disability”, Gait & Posture, Vol.22(1) ,pp.82–88 (2005).
[33]Cham, R., Redfern, M. S., “Changes in gait when anticipating slippery floors”,Gait & Posture, 15, pp.159–171 (2002).
[34]ANSI/ASSE A1264.2-2006, Provision of Slip Resistance on Walking/Working Surfaces ,American National Standard for Construction and Demolition Operations.
[35]Gronqvist, R.,“Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors”, Ergonomics Vol. 38(2), pp.224-241 (1995).
[36]Chang, W.R., “The effects of slip criteria and time on friction measurements”, Safety Science, Vol. 40(7-8), pp.593-611 (2002).
[37]Chang, W.R., Matz, S., “The slip resistance of common footwear materials measured with two slipmeters”, Appl. Ergon., Vol.32(6), pp.549-558 (2001).
[38]Li, K.W., Chang, W.R., Leamon, T.B., Chen, C.J.,“Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective perception under spillage conditions”, Safety Science, Vol.42(6), pp.547-565 (2004).
[39]Li, K.W., Chen, C.J.,“Effect of tread groove orientation and width of the footwear pads on measured friction coefficients”, Saf. Sci. Vol. 43(7), pp. 391-405 (2005).
[40]Chang, W.R.,“The effect of surface roughness on the measurement of slip resistance”, International Journal of Industrial Ergonomics,Vol.24(3),pp.299~313(1999).
[41]Liu L.W., Li, K.W.,“Study of Slip Resistance Assessment on Working Surfaces”, Iosh100-H320,Taipei, (2011).[42]Li, K. W., Chen, C. J. ,“The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants”, Applied Ergonomics, Vol.35(6), pp.499–507 (2004).
[43]Li, K. W.,Chang, W. R.,Wei. J. C., Kou, C. H.,“Friction measurements on ramps using the Brungraber Mark II slipmeter”, Safety Science, Vol.44(5), pp.375–386 (2006).
[44]Liu, L. W., Li, K. W., Lee, Y. H., Chen, C. C.,Chen, C. Y., “Friction measurement anti-slip floors under shoe sole, contamination, and inclination conditions”,Safety Science, Vol.48(10), pp.1321-1326 (2010).
[45]Chang, W. R.,Matz, S., Chang, C. C.,“A comparison of required coefficient of friction for both feet in level walking” Safety Science,Vol.50(2), pp.240–243 (2012).
[46]Chang, W.R., Kim, I. J.,Manning, D.P., Bunterngchit, Y., “The role of surface roughness in the measurement of slipperiness”, Ergonomics,Vol. 44(13), pp.1200–1216(2001).
[47]Proctor, T.D., Coleman, V., “Slipping, tripping, and falling accidents in Great Britain – present and future”, Journal of Occupational Accidents,Vol.9(4), pp.269–285 (1988).
[48]Stevenson, M.G.,Hoang, K.,Bunterngchit, Y., Lloyd, D.G.,“Measurement of slip resistance of shoes on floor surfaces, Part 1: Methods”,Journal of Occupational Health Safety–Australia and New Zealand 5,pp. 115–120(1989).
[49]Gronqvist, R., Roine, J., Korhonen, E., Rahikainen, A., “Slip resistance versus surface roughness of deck and other underfoot surfaces in ships”, J. Occup. Accid., Vol.13(4), pp. 291-302 (1990).
[50]Chang, W.R.,“The effects of surface roughness and contaminant on the dynamic friction of porcelain tile”, Appl. Ergon., Vol.32(2), pp.173-184 (2001).
[51]Kim, I. J., Smith, R., Nagata, H.,“Microscopic observation of the progressive wear on shoe surfaces that affect the slip resistance characteristics”, International Journal of Industrial Ergonomics, Vol.28(1), pp.17-29 (2001).
[52]Manning, D. P., Jones, C., “The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane”, Appl. Ergon. ,Vol.32(2), pp.185-196 (2001).
[53]Chang, W. R., “Preferred surface microscopic geometric features on floors as potential interventions for slip and fall accidents on liquid contaminated surfaces”, Journal of Safety Research, Vol. 35(1), pp.71-79 (2004).
[54]Gao, C., Abeysekera, J., Hirvonen, M., Gronqvist, R.,“ Slip resistance properties of footwear on ice”, Ergonomics, Vol. 47(6), pp.710-716 (2004).
[55]Harris G. W., Shaw S. R., “Slip resistance of floors: Users' opinions, Tortus instrument readings and roughness measurement” ,Journal of Occupational Accidents,Vol.9(4), pp.287–298(1988).
[56]Manning, D. P., Jones, C., Bruce, M., “Proof of shoe slip-resistance by a walking traction test”Journal of Occupational Accidents,Vol.12(4),pp.255–270(1990).
[57]Manning, D. P., Jones, C., “The superior slip-resistance of footwear soling compound T66/103”, Safety Science, Vol.18(1), pp.45–60(1994).
[58]Chang, W. R., “The effect of surface roughness on dynamic friction between neolite and quarry tile”,Safety Science, Vol.29(2), pp.89–105(1998).
[59]Strandberg, L.,“The effect of conditions underfoot on falling and overexertion accidents”, Ergonomics, Vol.28 (1), pp.131–147 (1985).
[60]Leclercq, S., Tisserand, M., Saulnier, H.,“Tribological concepts involved in slipping accidents analysis”, Ergonomics, Vol.38 (2), pp.197–208 (1995).
[61]Manning, D. P., Jones, C., “The effect of roughness, floor polish, water, oil and ice on underfoot friction: current safety footwear solings are less slip resistant than microcellular polyurethane”, Applied Ergonomics, Vol.32(2), pp.185–196 (2001).
[62]Mills, R., Dwyer-Joyce, R. S., Loo-Morrey, M., “The mechanisms of pedestrian slip on flooring contaminated with solid particles”Tribology International,Vol.42(3),PP.403–412, (2009).
[63]Yamaguchi, T., Umetsu, T., Ishizuka, Y., Kasuga, Y., Ito, T., Ishizawa, S., Hokkirigawa, K., “Development of new footwear sole surface pattern for prevention of slip-related falls”,Safety Science, Vol.50(4),pp. 986–994(2012).
[64]Haslam, R. A., Bentley, T. A., “Follow-up investigations of slip, trip and fall accidents among postal delivery workers”, Safety Science ,Vol. 32(1), pp.33–47 (1999).
[65]Cham, R., Redfern, M. S., “Heel contact dynamics during slip events on level and inclined surfaces”, Safety Science, Vol. 40(7-8), pp.559–576 (2002).
[66]Chang, W. R., Li, K. W., Huang, Y. H., Filiaggi, A., Courtney, T. K., “Assessing floor slipperiness in fast-food restaurants in Taiwan using objective and subjective measures”, Appl. Ergon., Vol.35(4) , pp. 401-408 (2004).
[67]Myung, R., Smith, J. L., Leamon, T. B., “Slip distance as an objective criterion to determine the dominant parameter between static and dynamic COFs”, Proceedings of the Human Factors Society 36th Annual Meeting, pp. 738–741.
[68]Leamon, T. B., Son, D. H., The natural history of a microslip. In: Mital, A. (Ed.), Advances in Industrial Ergonomics and Safety. Taylor & Francis, London, UK, pp. 633–638(1989).
[69]McGorry, R. W., DiDomenico, A., Chang, C. C. , “The use of a heel-mounted accelerometer as an adjunct measure of slip distance”, Applied Ergonomics, Vol.38(3) , pp. 369-376 (2007).
[70]DiDomenico, A., McGorry, R. W., Chang, C. C., “Association of subjective ratings of slipperiness to heel displacement following contact with the floor”, Applied Ergonomics Vol.38(5),pp.533–539(2007).
[71]Leamon, T., Li, K. W., “Microslip length and perception of slipping” ,23rd International Congress on Occupational Heath, Montreal, Canada, 22-28 September, 1990, pp. 17-18 (1990).
[72]Lanshammar, H., Strandberg, L., Horizontal Floor reaction forces and heel movements during the initial stance phase. In: Matsui, H., Kobayashi, K. (Eds.). Biomechanics VIII. University Park Press, Baltimore(1983).
[73]Holbien-Jenny, M. A., Redfern, M. S., Gottesman, D., Chaffin, D. B., “ Kinematics of heel strike during walking and carrying: implications for slip resistance testing”,Ergonomics Vol.50(3), 352–363.
[74]McGorry. R. W., Chang, C. C., DiDomenico, A., “Rearward movement of the heel at heel strike”, Appl. Ergon. Vol.39(6), pp.678–684(2008).
[75]Minister’s Secretariat Statistics and Information Department of Ministry of Health,Labour and Welfare, 2006. Vital Statistics of Japan 2004, vol. 1. Health & Welfare Statistics Association.
[76]Redfern, M. S., DiPasquale, J., “Biomechanics of descending ramps”, Gait & Posture Vol.6(2),pp119–125(1997).
[77]Strandberg, L., Lanshammar, H., “The dynamics of slipping accidents”, Journal of Occupational Accidents,Vol.3(3),pp.153–162(1981).
[78]Myung, R., “Use of backward slip to predict falls in friction test protocols”, International Journal of Industrial Ergonomics,Vol. 32 (5),.pp.319–329(2003).
[79]Chambers, A. J., Margerum, S., Redfern, M. S., Cham, R., “Kinematics of the foot during slips”, Occupational Ergonomics,Vol.3, No. 4, pp.225–234(2003).
[80]Cham, R., Redfern, M. S., “Heel contact dynamics during slip events on level and inclined surfaces”, Safety Science, Vol.40 (7–8), pp.559–576(2002).
[81] Redfern, M. S., Cham, R., Gielo-Perczak, K., Gronqvist, R., Hirvonen, M., Lanshammar, H., Marpet, M., Pai, C. Y., Powers, C., “Biomechanics of slips”, Ergonomics Vol.44 (13),pp. 1138–1166(2001).
[82]Myung, R., Smith, J. L., Leamon, T. B., “Subjective assessment of floor slipperiness”, International Journal of industrial Ergonomics, Vol.11(4), pp.313-319(1993).
[83]Karst, G. M., Hageman, P. A., Jones, T. F., Bunner, S. H., “Reliability of foot trajectory measures within and between testing sessions”,Journal of Gerontology Medical Sciences ,Vol.54(7),pp.M343–M347 (1999).
[84]Mills, P. M., Barret, R. S., “Swing phase mechanics of healthy young and elderly men”, Human Movement Science,Vol. 20 (4-5), pp. 427-446(2001).
[85]Espy, D. D., Yang, F., Bhatt, T., Pai, Y. C.,“Independent influence of gait speed and step length on stability and fall risk”, Gait & Posture,Vol.32 (3), pp. 378-382 (2010).
[86]Cham, R., Redfern, M. S.,“Lower extremity corrective reactions to slip events”, Journal of Biomechanics,Vol.34 (11), pp.1439-1445 (2001).
[87]Cham, R., Redfern, M. S.,“Changes in gait when anticipating slippery floors”, Gait & Posture, Vol.15 (2), pp. 159–171 (2002).
[88]Bhatt, T., Wening, J. D., Pai, Y. C., “Influence of gait speed on stability: recovery from anterior slips and compensatory stepping”, Gait & Posture, Vol.21 (2), pp.146–156 (2005).
[89]Brady, R. A., Pavol, M. J., Owings, T. M.,Grabiner, M. D.,“Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking”,Journal of Biomechanics, Vol.33 (7), pp.803–808 (2000).
[90]Lockhart, T. E.,Woldstad, J. C.,Smith, J.L.,“Effects of age-related gait changes on the biomechanics of slips and falls”, Ergonomics, Vol.46(12), pp.1136-1160 (2003).
[91]Lockhart, T. E.,Woldstad, J. C.,Smith, J. L.,Ramsey, J. D.,“Effects of age related sensory degradation on perception of floor slipperiness and associated slip parameters”Safety Sci.Vol.40(7-8),pp.689–703(2002).
[92]Lockhart, T. E.,Spaulding, J. M.,Park, S. H.,“Age-related slip avoidance strategy while walking over a known slippery floor surface”, Gait &Posture 26(1),pp.142–149(2007).
[93]Winter, D. A.,Patla, A. E.,Frank, J. S.,Walt, S. E.,“Biomechanical walking pattern changes in the fit and healthy elderly”,Phys Ther,Vol70(6),pp.340–347(1990).
[94]Lockhart, T. E., Kim, S. W.,“Relationship between hamstring activation rate and heel contact velocity: factors influencing age-related slip-induced falls”, Gait & Posture ,Vol.24(1),pp.23–34(2006).
[95]Gronqvist, R., Hirvonen, M.,Tohv, A., “Evaluation of three portable floor slipperiness testers”, International Journal of Industrial Ergonomics, Vol.25(1), pp. 85-95 (2000).
[96]Chang, W. R., Li, K. W., Huang, Y. H., Filiaggi, A., Courtney, T. K.,“Objective and subjective measurements of slipperiness in fast-food restaurants in the USA and their comparison with the previous results obtained in Taiwan”, Safety Science , Vol.44(10), pp.891-903 (2006).
[97]Li, K. W., Hsu, Y. W., Chang, W. R., Lin, C. H.,“Friction measurements on three commonly used floors on a college campus under dry, wet, and sand-covered conditions”, Safety Science, Vol.45 (9), pp.980-992 (2007).
[98]American Society for Testing and Materials, F-1677-05, Standard method of test for using a portable inclinable articulated strut slip tester (PIAST), Annual Book of ASTM Standards. vol. 15.07. West Conshohochen, PA, American Society for Testing and Materials(2005).
[99]Miller, J. M., “ “Slippery” work surface: toward a performance definition and quantitative coefficient of friction criteria”, J. Saf. Res. ,VOl.14, pp.145-158(1983).
[100]Li, K. W., Wu, H. H., Lin, Y. C., “The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants”, Appl. Ergon. Vol.37(6), pp.743-748 (2006).
[101]Neter, J., Wasserman, W., Kutner, M. H., Applied Linear Regression Models, 2nd ed., Richard D. Irwin Inc., Homewood, IL, USA (1989).
[102]McVay, E. J.,Redfern, M. S.,“Rampway safety: foot forces as a function of rampway angle”, American Industrial Hygiene Association Journal,Vol.55(7), pp.626-634 (1994).
[103]Liu, L. W., Lee, Y. H., Li, K. W., Lin, C. J., Chen, C. Y., “Shoe Sole Tread Designs and Outcomes of Slipping and Falling on Slippery Floor Surfaces” ,PLOS ONE Vol. 8, Issue7, e68989. (2013).
[104]Li, K. W., Chang, W. R., Chang, C. C., “Evaluation of two models of a slipmeter”, Safety Science, Vol.47 (10), pp.1434-1439 (2009).
[105]Davis, P. R., “Human Factors contributing to slips, trips, and falls”, Ergonomics, Vol.26 (1), pp.51-59 (1983).

無法下載圖示 全文公開日期 2019/01/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE