簡易檢索 / 詳目顯示

研究生: 吳子揚
Tzu-Yang Wu
論文名稱: 正交分頻多工系統中以二維基因演算法為基礎之聯合載波配置與天線選擇及功率控制
Two-Dimensional Genetic Algorithm for Joint Subcarrier Allocation and Antenna Selection with Power Control in OFDM systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
呂政修
Jenq-Shiou Leu
丘建青
Chien-ching Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 54
中文關鍵詞: 二維基因演算法正交分頻多工多輸入單輸出子載波天線選擇區塊之天線選擇功率控制使用者選擇
外文關鍵詞: Two-dimensional HGA, per-subcarrier antenna selection, per-chunk antenna selection, user selection
相關次數: 點閱:238下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正交分頻多工是現今一種相當有潛力的無線網路傳輸技術,搭配多天線傳送訊號至目的端來形成一個分散式天線陣列,進而提供空間分集增益,透過已知的通道訊息來做適當的資源分配,將能有效提升系統的整體效能。在本論文中,我們考慮在正交分頻多工系統中的多輸入單輸出網路,並在此機制上做資源分配讓系統達到最佳的傳輸率。此最佳化問題包含了功率分配與子載波天線選擇,其中功率控制的問題除了考慮在總功率的限制下,也考慮了單根天線的功率上限。由於聯合功率控制與子載波天線選擇是一個混合整數規劃問題,因此我們提出以混合型基因演算法來解決此問題。並為了子載波天線選擇提出了二維的基因演算法,使基因演算法能更容易在我們的問題上收斂,更快得到較好的結果。基於當子載波數目與天線數目越大時,基因演算法較難收斂,我們亦提出了一個兩階段式低複雜度演算法,其在第一階段,先固定功率並使用基因演算法來求得子載波天線選擇對,而在第二
    階段,則將子載波天線選擇對代入問題,並求得最佳功率分配。
    在第二部分中我們考慮在多使用者的正交分頻多工系統中,結合子載波為區塊來考慮,並結合使用者選擇及區塊之天線選擇與功率控制,在於如何選擇區塊來使系統總傳輸速率最大化,對此複雜的非線性問題,我們亦使用二維的基因演算法來求解。
    相關模擬結果顯示在不同的限制考量下,我們所提出之演算法相較於前人的方法,能獲得更好的系統效能。


    Orthogonal frequency division multiplexing (OFDM) is an emerging transmission technique in wireless networks. Meanwhile, when the transmitter is equipped, with multiple antennas, the spatial diversity gains can enhance the performance. It is also known that proper resource allocation can increase the system efficacy.
    In light of this, in this thesis, we consider the resource allocation in multi-input single-output OFDM networks. Our objective is to maximize the sum rate by per-subcarrier antenna selection and power control under the total power and the individual power of antenna. Such a joint consideration leads to a mixed integer programming (MIP) problem, which calls for enormous amount of complexity.
    To resolve this MIP problem with reasonable cost, we address a heterogeneous two-dimensional (2-D) genetic algorithm (HGA). Furthermore, in light of the low convergence of HGA when the number of subcarriers and antennas are large, a two-stage low-complexity solution of the HGA is presented, which first uses the GA to determine the subcarrier-antenna pairs with equal power allocation and then devises the optimal power allocation in the second stage.
    To reduce the overall complexity, we also consider in a chunk-based multiuser OFDM systems, and determine the optimum per-chunk antenna selection and power allocation with user selection so as to maximize the sum rate. Again, we devise a 2-D HGA to resolve the MIP involved.
    Simulations show that the proposed new HGA approach and the suboptimal two-stage solutions provide superior performance compared with previous works. The
    two-stage solutions are in particular appealing with greatly reduced computations.

    第一章序論1 1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文章節概述 . . . . . . . . . . . . . . . . . . . . . . 3 第二章相關背景回顧3 2.1 無線通訊系統. . . . . . . . . . . . . . . . . . . . . . 4 2.2 子載波天線選擇機制. . . . . . . . . . . . . . . . . . 5 2.3 基因演算法. . . . . . . . . . . . . . . . . . . . . . . 6 2.4 總結. . . . . . . . . . . . . . . . . . . . . . . . . . . 12 第三章在正交分頻多工系統中聯合功率控制與子載波天線 選擇之混合型二維基因演算法13 3.1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 問題陳述 . . . . . . . . . . . . . . . . . . . . . . . . 15 3.3 二維混合型基因演算法. . . . . . . . . . . . . . . . . 15 3.3.1 低複雜度兩階段式演算法. . . . . . . . . . . 24 3.4 模擬分析與討論. . . . . . . . . . . . . . . . . . . . . 25 3.5 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第四章在多使用者正交分頻多工之多輸入單輸出網路中聯 合使用者選擇與區塊之天線選擇以及功率控制之混合型二維 基因演算法29 4.1 介紹 . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 問題陳述 . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 二維混合型基因演算法. . . . . . . . . . . . . . . . . 32 4.3.1 低複雜度兩階段式演算法. . . . . . . . . . . 42 4.4 模擬分析與討論. . . . . . . . . . . . . . . . . . . . . 43 4.5 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 第五章結論及未來展望48 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . 50

    [1] R. Freeman, Mobile Communications: Cellular Radio and Personal Communication
    Services. Wiley-IEEE Press, 2007.
    [2] B. E. Biglieri, MIMO Wireless Commun. Cambridge University Press, 2007.
    [3] K. J. R. Liu, A. K, W. S. Sadek, and A. Kwasinski,Cooperative Commun. and
    Networking. Cambridge University Press, 2008.
    [4] B. Rankov and A. Wittneben, “Spectral efficient protocols for halfduplex
    fading relay channels,” IEEE Journal on Selected Areas in Commun. , vol.
    25, no. 2, pp. 379-389, Feb. 2007.
    [5] T.Weiss, J. Hillenbrand, A. Krohn and F. K. Jondral, “Mutual interference in
    OFDM-based spectrum pooling systems,”in Proc. IEEE Vehicular Technol.
    Conf., vol. 4, pp. 1873-1877, 2004.
    [6] T. Weiss and F. K. Jondral, “Spectrum pooling: an innovative strategy for
    the enhancement of spectrum efficiency,” IEEE Commun. Magazine, vol. 42,
    no. 3, pp. 8-14, Mar. 2004.
    [7] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity-part I:
    system description” and ”User cooperation diversity-part II: implementation
    aspects and performance analysis,” IEEE Trans. Commun., vol. 51, no. 11,
    pp. 1927-1938, 1939-1948, Nov. 2003.
    [8] A. Paulraj, R. Nabar, D. Gore,Introduction to Space-Time Wireless Commun.
    Cambridge University Press, 2003.
    [9] M. Sandell and J. Coon, “Per-subcarrier antenna selection with power constraints
    in OFDM systems,” IEEE Trans. Wireless Commun., vol. 8, no. 2,
    pp. 673-677, Feb. 2009.
    [10] C. Vithanage, J. Coon, and S. Parker, “On capacity-optimal precoding for
    multiple-antenna systems subject to EIRP restrictions,” IEEE Trans. Wireless
    Commun., vol. 7, no. 12, pp. 5182-5187, Mar. 2008.
    [11] H. Shi, M. Katayama, T. Yamazato, H. Okada, and A. Ogawa, “An adaptive
    antenna selection scheme for transmit diversity in OFDM systems,” in Proc.
    IEEE Vehic. Technol. Conf., vol. 4, pp. 2168–2172, Oct. 2001.
    [12] N. P. Le, L. C. Tran, F. Safaei, “Transmit antenna subset selection with power
    balancing for high data rate MIMO-OFDM UWB systems,” in Proc. IEEE
    International Conf. on Ultra-Wideband (ICUWB)., pp. 159-164 2013.
    [13] K.-H. Park , Y.-C. Ko and M.-S. Alouini “Low-complexity transmission antenna
    selection with power balancing in OFDM systems,” IEEE Trans. Wireless
    Commun., vol. 9, no. 10, pp. 3018 -3023, 2010.
    [14] R. Cepeda, J.P. Coon, “PAPR reduction by nulled subcarrier distortion in
    per-subcarrier antenna selection systems,” in Proc. IEEE Wireless and Mobile
    Computing, Networking and Commun. Conf., pp. 570 - 574. 2010.
    [15] C.M. Vithanage, M. Sandell, J.P. Coon, Wang Yue “Precoding in OFDMbased
    multi-antenna ultra-wideband systems,” IEEE Commun. Magazine.,
    vol. 47, issue: 1, pp. 41 - 47, Jan. 2009.
    [16] C.-T. Su and C.-S. Lee, “Network reconfiguration of distribution systems using
    improved mixed-integer hybrid differential evolution,” IEEE Trans. Power
    Delivery, vol. 18, no. 3, pp. 1022-1027, July 2003.
    [17] I. G. Damousis, A. G. Bakirtzis and P. S. Dokopoulos, “A solution to the unitcommitment
    problem using integer-coded genetic algorithm,” IEEE Trans.
    Power Systems, vol. 19, no. 2, pp. 1165-1172, May 2004.
    [18] J.H. Holland, Genetic Algorithms. Sci. Am. 1992.
    [19] T. Yalcinoz and H. Altum, “Power economic dispatch using a hybrid genetic
    algorithm,” IEEE Power Eng. Rev., vol. 21, pp. 59-60, 2001.
    [20] H.-Y. Lu and W.-H. Fang, “Joint transmit/receive antenna selection in MIMO
    systems based on the priority-based genetic algorithm,” IEEE Antennas and
    Wireless Propagation Letters, vol. 6, pp. 588-591, 2007.
    [21] K. Tang, K. Man, S. Kwong, and Q. He, “Genetic algorithms and their applications,”
    IEEE Sig. Proc. Magazine, vol. 13, pp. 22-37, Nov. 1996.
    [22] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna downlink
    with per-antenna power constraints,” IEEE Trans. Signal Proc., vol. 55, no.
    6, pp. 2646-2660, Jun. 2007.
    [23] L. Lei, V. Angelakis, and D. Yuan, “Performance Analysis of Chunk-Based
    Resource Allocation in Wireless OFDMA Systems,” in Proc. IEEE Computer
    Aided Modeling and Design of Communication Links and Networks Conf., pp.
    90-94, 2012.
    [24] D. Vasileios Papoutsis and A. Kotsopoulos, “Resource Allocation Algorithm
    for MISO-OFDMA Systems with QoS Provisioning,” in Proc. International
    Conf. on Wireless and Mobile Commun., pp. 7-11. 2011.
    [25] I. Basturk and B. Ozbek, “Fairness aware resource allocation for downlink
    MISO-OFDMA systems,” in Proc Wireless Commun. and Networking Conf.,
    pp. 188-192. 2012.
    [26] M. M. Selim , S. E. and H. Shalaby, “Reduced complexity QoS aware resource
    allocation technique for MISO-OFDMA systems,” in Proc Computing,
    Networking and Commun. Conf., pp. 950 - 954, 2014.
    [27] H. Zhu and J. Wang, “Chunk-based resource allocation for OFDMA systems,
    Part I : chunk allocation,” IEEE Trans. on Commun., vol. 57, no. 9, pp.
    2734-2744, Sep. 2009.
    [28] H. Zhu and J. Wang, “Chunk-based resource allocation in OFDMA systems-
    Part II : joint chunk, power and bit allocation, ” IEEE Trans. on Commun.,
    vol. 60, pp. 499-509, no. 2, Feb. 2012.

    QR CODE