簡易檢索 / 詳目顯示

研究生: 林冠傑
Kuan-Jie Lin
論文名稱: 以三維解耦分析方法探討開挖引致地盤反應與不同方位之鄰房損害潛勢評估
Assessment of Ground Responses and Building Damage Potential at various positions due to Excavation using 3D Decoupled Analysis Method
指導教授: 林宏達
Horn-Da Lin
口試委員: 陳正誠
Cheng-Cheng Chen
歐章煜
Chang-Yu Ou
王建智
Chien-Chin Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 199
中文關鍵詞: 深開挖三維模擬鄰近結構物解耦分析方法
外文關鍵詞: Deep excavation, 3D simulation, Adjacent building, Decouple Analysis Method
相關次數: 點閱:226下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去開挖研究多以平變應變進行不考量鄰近結構物之自由場(Greenfield)開挖模擬,並以自由場分析結果評估開挖引致的鄰房損害潛勢。實際上鄰近結構物之深開挖屬複雜的三向度問題,並且鄰房變形量與自由場地表沉陷量之間有明顯的差異。因此本研究目的為探討三維開挖引致地盤反應與鄰房之互制行為。本研究利用一穩健的解耦分析方法(DAM)探討獨立基腳型式之低樓層學校結構物在9個不同方位開挖引致之地盤反應與鄰房損害潛勢。研究分析結果顯示開挖引致鄰房基腳垂直位移量均大於鄰房位置對應的自由場沉陷量,鄰房基腳水平位移量因繫梁之束制效果而較為均勻。鄰房位於開挖區相同距離時,鄰房長軸平行開挖區方向之損害潛勢均較垂直開挖區方向嚴重。主要位於沉陷下凹區之鄰房受開挖引致的結構變形與塑性鉸數量均較其他鄰房位置嚴重,損害主要由角變量造成。位於沉陷過渡區及上拱區之鄰房承受側向應變影響較其他位置嚴重,且繫梁承受較大張力並產生較多塑性鉸。此外,本研究彙整9個不同鄰房方位之分析結果顯示鄰房角變量約為自由場角變量之0.62倍至1.5倍,並進一步建立鄰房角變量與自由場沉陷量之關係式,最後以平均絕對誤差百分比(MAPE)驗證顯示此關係式具有良好預測鄰房角變量的能力。本研究成果能提供鄰近結構物之深開挖工程及鄰房損害潛勢評估應用參考。


    In the previous studies, most of the deep excavation analyses were conducted in plane strain condition. Adjacent building damage potential were usually evaluated by greenfield results. However, deep excavation with adjacent building is a complex three-dimensional problem and the ground settlement with building is different from the greenfield settlement. Therefore, the aims of this research is to study 3D excavation-structure interactions due to the excavation. The existing adjacent building is a typical low-rise school building supported by spread footings. The excavation-induced ground response and building damage potential of nine scenarios are studied by using a robust Decouple Analysis Method(DAM). The analytical results show that the footing displacement are significantly larger than the greenfield settlement at the same position. The footing horizontal movements are more evenly due to the effect of the tie-beam. At the same distance from the excavation, the building with the long axis parallel to the excavation exhibited more damage potential than that of the long axis perpendicular to the excavation. The building located mainly in the sagging zone is more prone to damage due to larger angular distortion and plastic hinge formation than buildings at other positions. The building located in the transition and hogging zone withstand more lateral strain than in the sagging zone, and tie beam exhibit more severe tension and more plastic hinge. Moreover, the nine scenarios results show that the building angular distortion is about 0.62 to 1.5 times of the greenfield angular distortion. This studies further develops the empirical correlation between the building angular distortion and the greenfield settlement. The proposed empirical correlation is validated using Mean Absolutely Percentage Error and shows a good agreement with the analysis result of building angular distortion. Research results can provide valuable information for deep excavation and damage potential assessment of the adjacent structures.

    論 文 摘 要 ABSTRACT 誌謝 表目錄 圖目錄 第一章 緒論 1.1 研究背景與目的 1.2 研究內容及架構 第二章文獻回顧 2.1開挖引致牆體變形與地表沉陷之特性 2.2開挖引致鄰房結構物變形行為 2.3 開挖引致結構物潛勢損害評估 2.4三維開挖與鄰房結構物之數值分析 2.5三維開挖與鄰房結構物之解耦分析 第三章 三維解耦分析方法 3.1三維解耦分析方法架構 3.2三維解耦分析之結構物及開挖模擬方法 3.2.1結構物模擬方法 3.2.2 開挖模擬方法 3.2.3開挖與結構物迭代分析方法 3.2 土壤模式介紹 3.2.1莫爾-庫倫模式 3.2.2土壤硬化模式 3.2.3土壤硬化小應變模式 第四章 開挖案例數值模擬及鄰近結構物之三維解耦分析 4.1開挖之數值模擬 4.1.1開挖案例工程概況介紹 4.1.2擋土結構參數 4.1.3土壤參數 4.1.4三維開挖分析流程 4.1.5自由場開挖模擬結果驗證 4.2鄰近結構物分析模擬 4.2.1結構物假設案例介紹 4.2.2結構物分析流程 4.3基準案例-開挖引致鄰房反應之三維解耦分析 4.4 不同土壤模式之解耦分析結果與討論 第五章 開挖引致地盤反應與不同方位之鄰房損害潛勢評估 5.1鄰房之方向及位置 5.2不同鄰房方位之地盤反應 5.2.1牆體變形 5.2.2地表沉陷 5.3開挖引致不同方位之鄰房反應 5.4不同方位之鄰房損害潛勢評估 5.5自由場沉陷量與鄰房角變量之關係 第六章 結論與建議 6.1結論 6.1.1土壤及開挖模式率定 6.1.2地盤反應 6.1.3鄰房反應 6.1.4鄰房損害潛勢 6.1.5鄰房角變量與自由場角變量關係 6.2建議 參考文獻

    1.陳維晟(2015),「三維空間下開挖行為與鄰房反應之解耦分析與探討」,碩士論文,國立台灣科技大學營建工程所。
    2.歐章煜(2009),「深開挖工程-分析設計理論與實務」,科技圖書。
    3.歐章煜(2016),「考慮小應變特性之深開挖地表沉陷之簡化分析法」,有限元素法於大地工程應用技術研討會-深開挖及邊坡工程,國立台灣科技大學。
    4.Bjerrum, I. (1963). "Allowable settlement of structures." Proceedings of European Conference on Soil Mechanics and Foundation Engineering 2: 35-137.
    5.Boone, S. J. (1996). "Ground-movement-related building damage." Journal of Geotechnical Engineering 122(11): 886-896.
    6.Boscardin, M. D., and Cording, E. J. (1989). "Building response to excavation induced settlement." Journal of Geotechnical Engineering, ASCE 115(1): 1-21.
    7.Burd, H. J., Houlsby, G. T., Augarde, C. E., and Liu, G. (2000). "Modelling tenneling-induced settlement of masory buildings." Proc. Instn Civ. Engrs: 17-29.
    8.Clough, G. W., and O'Rourke, T. D. (1990). "Construction-induced movements of in-situ walls. Proceedings of Design and Performance of Earth Retaining Structures," ASCE Special Conference. Ithaca, NY: 439-470.
    9.Dang, H. P. (2008). Excavation Behavior and Adjacent Building Reponse Analyses Using User Defined Soil Models in PLAXIS. Master dissertation, National Taiwan University of Science and Technology.
    10.Dang, H. P., Lin, H. D., Kung, J. H. S., Wang, C. C. (2012). "Deformation behavior analyses of braced excavation considering adjacent structure by user-defined soil models." Journal of GeoEngineering 7(1): 013-020.
    11.Finno, R. J., Bryson, S., and Calvello, M. (2002), "Performance of a stiff support system in soft clay." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 128, No. 8, pp. 660-671.
    12.Finno, R. J, Voss, F. T., Rosscow, E., and Blackburn, J. T. (2005), “Evaluating damage potential buildings affected by excavations”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No.10, pp. 1199-1210.
    13.Finno, R. J., Blackburn, J. T., and Roboski, J. F. (2007). "Three-dimensional effects for supported excavation in clay." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 133(1): 30-36.
    14.Gazetas, G. and Tassoulas, J. L. (1987). "Horizontal stiffness of arbitrarily shaped embedded foundations." Journal of Geotechnical Engineering, ASCE 113(5): 440-457.
    15.Hsieh, P. G., and Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." Canadian Geotechnical Journal 35(6): 1004-1017.
    16.Hsieh, P. G., Kung, T. C., Ou, C. Y., and Tang, Y. G. (2003). "Deep excavation analysis with consideration of small strain modulus and its degradation behavior of clay." 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Singapore.
    17.Jacky,J.,(1944). "The coefficeint of earth pressure at rest." Journal of the society of Hungarian Architects and Engineers, Vol.78, No.22, pp.355-358
    18.Kung, G. T. C., Hsiao, E. C. L., and Juang, C. H. (2007a). "Evaluation of simplified small strain soil model for analysis of excavation induced movments." Canadian Geotechnical Journal 44: 726-736.
    19.Kung, G. T. C., Juang, C. H., Hsiao, E. C. L., and Hashash, Y. M. A. (2007b). "Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 133(6): 731-747.
    20.Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F., & Poulous, H. G. (1977) "Stress-deformation and strength characteristics." State-of-the-ART Report, Proceedings of Ninth International Conference on soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp,421-494.
    21.Lewis, C. D., (1982). "Industrial and Business Forecasting Method", London:Butterworth Scientific Publishers.
    22.Laefer, D. F., Ceribasi, S., Long, J. H., and Cording, E. J. (2009). "Predicting RC frame response to excavation-induced settlement." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 135(11): 1605-1619.

    23.Lim, A., Ou, C. Y., and Hsieh, P. G. (2010). "Evaluation of clay constitutive models for analysis of deep excavation under undrained consitions." Journal of GeoEngineering 5(1): 9-20.
    24.Lin, H. D., Dang, H. P., Kung, J. H. S., Hsiung, B. C. B., and Chen, C. H. (2011). "Performance of a zoned excavation and its effects on neighbouring buildings." The 14th Asian Regional Conference, International Society of Soil Mechanics and Geotechnical Engineering. HongKong.
    25.Lin, H. D., Truong, H. M., Dang, H, P., and Chen, C. C. (2014). "Assessment of 3D Excavation and Adjacent Building's Reponses with Consideration of Excavation-Structure Interaction." Tunelling and Underground Construction GSP 242: 256-265.
    26.Lin, H. D., Mendy, S., Liao, H. C., Dang, H. P., Hsieh, Y. M., and Chen, C. C. (2016). "Responses of 3D Excavation and Adjacent building in sagging and hogging zones using decouple analysis method." Journal of GeoEngineering .(已接受,預計2016/8刊登)
    27.Mendy, S. (2014) Study of excavation behavior and adjacent building response Using 3D Decouple Analysis. Master dissertation, National Taiwan University of Science and Technology.
    28.Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993). "Characteristics of ground surface settlement during excavation." Canadian Geotechnical Journal 30: 758-767.
    29.Ou, C. Y., Chiou, D. C., and Wu, T. S. (1996). "Three-dimentional finite element analysis of deep excavations." Journal of Geotechnical Engineering, ASCE 122(5): 337-345.
    30.Ou, C. Y., Liao, J. T., and Lin, H. D. (1998). "Performance of diaphragm wall constructed using top-down method." Journal of Geotechnical and Geoenvironmetal Engineering 124(9): 798-808.
    31.Ou, C. Y., Liao, J. T., and Cheng, W. L. (2000). "Building response and ground movements induced by a deep excavation." Geotechnique 50(3): 209-220.
    32.Plaxis 3D. (2014). Material Models Manual.
    33.Potts, D. M., and Addenbrooke, T. I. (1997). "A structure's influence on tunneling-induced ground movements." Proc. Instn Civ. Engrs Geotech. Engng(125): 109-125.
    34.Schuster, M., Kung, G. T. C., Juang, C. H., and Hashash, Y. M. A. (2009). "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 135(12): 1823-1835.
    35.Son, M., and Cording, E. J. (2005). "Estimation of building damage due to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 131(2): 162-177.
    36.Teng, F. C. (2010) Prediction of ground movement induced by excavation using the numerical method with the consideration of inherent stiffness anisotropy. Ph.D dissertation, National Taiwan University of Science and Technology.
    37.Truong, H. M. (2013) Study of excavation behavior and adjacent building response with 3D simulation. Master dissertation, National Taiwan University of Science and Technology.
    38.Yen, D. L., and Chang, G. S. (1991). "A study of allowable settlement of buildings." Sino-Geotechnics(22): 5-27.
    39.Woo, S. M. (1992), “Effects of excavation on adjacent buildings”, Sino-Geotechnics, No. 40, pp. 35-50.

    QR CODE