簡易檢索 / 詳目顯示

研究生: 林庭妤
Ting-Yu Lin
論文名稱: 柔性回包式牆面加勁擋土牆之數值分析
Numerical Analyses of A Geosynthetic-Reinforced Soil Wall with Flexible Wrapped-Around Facing
指導教授: 楊國鑫
Kuo-Hsin Yang
口試委員: 洪勇善
Yung-Shan Hong
林宏達
Horn-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 196
中文關鍵詞: 加勁擋土牆柔性回包式牆面有限元素法分析
外文關鍵詞: Geosynthetic-reinforced wall, Wrapped faces, Finite element analysis
相關次數: 點閱:348下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對柔性回包式加勁擋土牆建立一有限元素法數值模式,並探討材料參數、施工與夯實方式,以及數值元件對加勁材應變分佈、張力發展與牆面變位之影響。本研究利用相對誤差概念(MAPE)以量化上述各因子的影響程度。本研究數值驗證選用加拿大皇家軍事學院所試驗的足尺寸回包式加勁擋土牆,以有限元素分析二維軟體PLAXIS針對此加勁擋土牆於工作應力情形下進行模擬與比較。研究分析的一項重點在於探討回包式牆面的模擬方式及回包牆面板彎曲勁度EI值的選定。此外,本研究亦考慮牆面在施工中是否束制(模擬現地施工中用來束制牆面的臨時支撐)對其數值模擬結果的影響。基準模型建立完成後,觀察其加勁材應變、張力發展及整體牆面變形趨勢。後續進行改變回填土材料性質、界面參數性質、牆面性質、土壤夯實方式之一系列參數分析。參數分析結果顯示回填土壤的本構模型及剪脹角值、牆面回包段長度、有無考慮牆趾束制的效果、牆面施工方法、夯實應力及牆後1公尺土壤參數折減等,改變這些參數會產生較大的相對誤差值,因此在模擬時,正確模擬這些項目,以獲得較準確之預測值。另外,界面性質(界面折減因子、界面長度)及夯實間距等,這些數值預測結果的相對誤差值較小。本研究成果可提供未來以有限元素法分析回包式牆面加勁擋土牆參考。


The research describes a finite element model that was developed to simulate the response of a full-scale, geosynthetic-reinforced soil (GRS) wall with wrapped around faces. The selected GRS wall was 3.6m tall with uniform sand backfill built and carefully instrumented at Royal Military College. Numerical components and modeling procedures, especially the modeling approach for flexible wrapped faces, were described in the research. The baseline case was shown to yield predicted reinforcement tensile strains that are judged to be in good agreement with the measured data. After the numerical model was verified, a series of parametric analyses were carried out to examine the influence of soil constitutive model, soil modulus within 1 m from faces, interface, reinforcement wrapped length, stepped construction and compaction on the computed reinforcement loads and maximum facing displacement. A relative error technique was applied to quantitatively evaluate the influence of each parameter. The parametric study intended to identify key numerical components and modeling procedures which have influence on the computed reinforcement loads and facing displacement. The numerical results indicated that the interface and soil modulus within 1 m from faces have little influence on the predicted reinforcement loads for GRS structures under working stress conditions. The results of this study provide insightful information and facilitate the practical application of finite element analysis to GRS structure design.

論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 7 1.3研究方法 8 1.4論文架構 9 第二章 文獻回顧 11 2.1前言 11 2.2加勁土壤結構物 12 2.2.1定義 12 2.2.2加勁材料 14 2.2.3牆面面板類型 16 2.2.4設計步驟 17 2.2.5設計理論 19 2.2.6穩定性檢核 26 2.3數值分析於加勁擋土結構物之相關研究 31 2.3.1 Bathurst and Hatami (2005)及Bathurst et al. (2006) 32 2.3.2 Anubhav and Basudhar (2011) 34 2.3.3 Ehrlich and Mirmoradi (2013) 36 2.3.4 Mirmoradi and Ehrlich (2015) 38 2.3.5 Scotland et al. (2015) 39 第三章 數值分析與驗證 47 3.1加勁擋土牆試驗介紹 47 3.1.1土壤性質 49 3.1.2加勁材性質 53 3.1.3試驗結果 56 3.2數值分析方法 61 3.2.1分析軟體 61 3.2.2分析模式 65 3.2.3回填土本構模型 66 3.2.4界面元素 73 3.3數值模型驗證 76 3.3.1回填土參數校正 76 3.3.2加勁材參數校正 82 3.3.3邊界條件設定與建造過程模擬 86 3.3.4數值模式與驗證 92 第四章 參數分析與結果 101 4.1參數分析說明 101 4.2回填土材料性質 103 4.2.1土壤本構模型 103 4.2.2土壤剪脹角大小 112 4.3牆面性質 120 4.3.1牆面回包長度 120 4.3.2牆趾束制 128 4.3.3牆面情形 135 4.4界面參數性質 145 4.4.1土壤與加勁材間之界面強度折減因子 145 4.4.2界面長度 151 4.5土壤夯實特性 155 4.5.1夯實應力大小 155 4.5.2夯實間距 167 4.5.3牆面後1m土壤模數折減 171 4.6綜合結果 176 4.6.1參數分析之相對誤差結果 176 4.6.2模擬參數對加勁材張力發展之影響(視覺化效果表示之) 179 第五章 結論與建議 181 5.1結論 181 5.2建議 185 參考文獻 186

1. AASHTO, (2002), “Standard specifications for highway bridges”, American Association of State Highway and Transportation Officials.”, 17th ed., Washington, D.C.

2. Adams, M.T., (1997), “Performance of a Prestrained Geosynthetic Reinforced Soil Bridge Pier”, Mechanically Stabilized Backfill, Wu, editor, A. A. Balkema Publishers, Rotterdam, The Netherlands, pp. 35–53.

3. Allen, T.M., Walters, D.L., and Bathurst, R.J., (2002), “Conversion of
geosynthetic strain to load using reinforcement stiffness”, Geosynthetics International, 9(5–6): pp. 483–523.

4. Allen, T.M., Bathurst, R.J., Holtz, R.D., Walters, D., and Lee, W.F., (2003), “A new working stress method for prediction of reinforcement loads in geosynthetic walls”, Canadian Geotechnical Journal, 40(5): 976–994. pp. 78.

5. Alexiew, D. and Detert, O., (2008), “Analytical and numerical analyses of a real scaled geogrid reinforced bridge abutment loading test”, Proceedings of the 4th European Conference of Geosynthetics, Edinburgh, UK, paper 257, pp. 8.

6. Ang, A.H.-S. and Tang, W.H., (1975), “Probability concepts in engineering planning and design: Vol. 1 – Basic principles”, John Wiley and Sons, New York, N.Y.

7. Anubhav, S. and Basudhar, P.K., (2011), “Numerical modelling of surface strip footings resting on double-faced wrap-around vertical reinforced soil walls”, Geosynthetics International, 18, No. 1, pp. 21–34.

8. Arup Bhattacharjee and A.M. Krishna., (2013), “Effect of Backfill on Wrap Faced Reinforced Soil Wall Subjected to Seismic Excitation”, IJIRSET National Conference on Recent Advances in Civil Engineering, Vol. 3, Special Issue 4, pp. 37-42.

9. ASTM, (1986), “Standard test method for tensile properties of geotextiles by the wide-width strip method (D4595–86). CD ROM annual book of ASTM standards”, Vol. 4.13. American Society for Testing and Materials, West Conshohocken, Penn.

10. ASTM, (2004), “Standard test method for evaluating the unconfined tension creep and creep rupture behaviour of geosynthetics (D5262–04). CD ROM annual book of ASTM standards”, Vol. 4.13. American Society for Testing and Materials, West Conshohocken, Penn.

11. Atkinson, J.H., (1993), “An Introduction to the Mechanics of Soils and Foundations”, McGraw-Hill.

12. Bathurst, R.J., Jarrett, P.M., and Lescoutre, S.R., (1988), “An instrumented wrap-around geogrid wall”, In Proceedings of the 3rd Canadian Symposium on Geosynthetics, Kitchener, Ont. Canadian Geotechnical Society, Alliston, Ont. pp. 71–78.

13. Bathurst, R.J., Walters, D., Vlachopoulos, N., Burgess, P., and Allen, T.M., (2000), “Full scale testing of geosynthetic reinforced walls. In Advances in Transportation and Geoenvironmental Systems Using Geosynthetics”, Proceedings of Geo-Denver, Denver, Colo., 5–8 August 2000. Edited by J.G. Zornberg and B.R. Christopher. American Society of Civil Engineers, Special Publication 103. pp. 201–217.

14. Bathurst, R.J., Walters, D.L., Hatami. K., and Allen. T.M., (2001), “Full-scale performance testing and numerical modelling of reinforced soil retaining walls. In Proceedings of the 4th International Symposium on Earth Reinforcement”, IS Kyushu, Fukuoka, Japan, 14–16 November 2001. Edited by H. Ochiai, J. Otani, N. Yasufuku, and K. Omine. A.A. Balkema, Rotterdam, The Netherlands. Vol. 2, pp. 777–799.

15. Bathurst, R.J., Blatz, J.A., and Burger, M.H., (2003), “Performance of instrumented large-scale unreinforced and reinforced embankments loaded by a strip footing to failure”, Canadian Geotechnical Journal, 40: pp. 1067–1083.

16. Bathurst, R.J. and Hatami, K., (2005), “Development and verification of a numerical model for the analysis of geosynthetic reinforced soil segmental walls under working stress conditions”, Canadian Geotechnical Journal, Vol. 42, No. 4, pp. 1066-1085.
17. Bathurst, R.J., Vlachopoulos N., Walters, D.L., Burgess, P.G., and Allen, T.M., (2006)., “The influence of facing stiffness on the performance of two geosynthetic reinforced soil retaining walls”, Canadian Geotechnical Journal, v 43, n 12, pp. 1225-1237.

18. Bathurst, R.J., Miyata, Y., Nernheim, A., and Allen, A.M., (2008), “Refinement of K-stiffness method for geosynthetic-reinforced soil walls”, Geosynthetics International, 15, No. 4, pp. 269–295.

19. Bathurst, R.J., Huang, B., and Hatami, K., (2009), “Numerical study of reinforced soil segmental walls using three different constitutive soil models”, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 10, pp. 1486-1498.

20. Bathurst, R.J., Nernheim, A.,Walters, D.L., Allen, T.M., Burgess, P., and Saunders, D.D., (2009), “Influence of reinforcement stiffness and compaction on the performance of four geosynthetic-reinforced soil walls”, Geosynthetics International, 16, No. 1, pp. 43–59.

21. Bell, J.R., Stilley, A.N., and Vandre, B., (1975), “Fabric retained earth walls”, In Proceedings of the 13th Annual Engineering Geology and Soils Engineering Symposium, University of Idaho, Moscow, Idaho. Idaho Department of Highways, Boise, Idaho. pp. 271–287.

22. Benigni, C., Bosco, G., Cazzuffi, D., and Col, R.D., (1996), “Construction and Performance of an Experimental Large-Scale Wall Reinforced with Geosynthetics”, Earth Reinforcement (Ochiai, Yasufuku, and Omine, editors) Vol. 1, A. A. Balkema Publishers, Rotterdam, The Netherlands pp. 315–320.

23. Bingquan Huang, Richard J. Bathurst, Kianoosh Hatami, and Tony M. Allen., (2010), “Influence of toe restraint on reinforced soil segmental walls” Can. Geotech. J. 47: pp. 885–904.

24. Bishop, A.W., (1955), “The Use of the Slice Circle in the Stability of Slopes”, Geotechnique, London, U.K., 5, pp. 7-17.

25. Broms, B.B., (1978), “Design of fabric reinforced retaining structures”, In Proceedings of the Symposium on Earth Reinforcement, ASCE Annual Convention, Pittsburg, Penn., 27 April 1978. ASCE, Pittsburgh, Pa. pp. 282–304.

26. Byrne, P., Duncan, J.M., Wong, K.S., and Mabry, P., (1980), “Strength, stress–strain and bulk modulus parameters for finite element analysis of stresses and movements in soil masses”, Department of Civil Engineering, University of California, Berkeley, Calif. Report No. UCB/GT/80-01.

27. Christopher B.R., Leshchinsky D., and Stulgis R., (2005), “Geosynthetic-Reinforced Soil Walls and Slopes: US Perspective”, International Perspectives on Soil Reinforcement Applications. ASCE Geotechnical Special Publication No. 141, ASCE Press, Reston, Virginia, January 2005, ISBN 0-7844-0769-X, pp. 166.

28. Damians, I., Bathurst, R., Josa, A., and Lloret, A., (2014), “Numerical Analysis of an Instrumented Steel-Reinforced Soil Wall”, Int. J. Geomech., 10.1061/(ASCE)GM.1943-5622.0000394, 04014037.

29. Dantas, B.T., (2004), “Working Stress Analysis Method for Reinforced Cohesive Soil Slopes”, D.Sc. thesis. COPPE/UFRJ, Rio de Janeiro (in Portuguese).

30. Duncan, J.M. and Chang, C.M., (1970), “Nonlinear analysis of stress and strain in soils”, Journal of Soil Mechanics and Foundations Division, ASCE, 96(SM5), pp. 1629-1653.

31. Duncan, M and Wright S.G., (2005), “Soil Strength and Slope Stability”, John Wiley and Sons, Inc. pp. 297.

32. Dyer, N.R. and Milligan, G.W.E., (1984), “A photoelastic investigation of the interaction of a cohesionless soil with reinforcement placed at different orientations”, In: Proc., Int. Conf. on in Situ Soil and Rock Reinforcement, pp. 257-262.
33. E. Seyedi Hosseininia, (2015), “A comparative numerical study of a geosynthetic-reinforced soil wall using three different constitutive soil models”, Iranian Journal of Science and Technology-Transactions of Civil Engineering, ( ISI ), Volume (39), No (1), Year (2015-2) , pp. 125-141.

34. Ehrlich, M. and Mitchell, J.K., (1994), “Working stress design method for reinforced soil walls”, J. Geot. Eng. ASCE 120 (4), pp. 625-645.

35. Ehrlich, M. and Mitchell, J.K., (1995), “Working stress design method for reinforced soil walls disclosure” J. Geotech. Eng. ASCE 121 (11), pp. 820-821.

36. Ehrlich, M., Mirmoradi, S.H., and Saramago, R.P., (2012), “Evaluation of the effect of compaction on the behavior of geosynthetic-reinforced soil walls”, Geotextiles and Geomembranes, 34, pp. 108–115.

37. Ehrlich, M. and Mirmoradi, S.H., (2013), “Evaluation of the effects of facing stiffness and toe resistance on the behavior of GRS walls”, Geotext. Geomembr. 40, pp. 28-36.

38. Ehrlich, M. and Mirmoradi, S.H., (2014), “Numerical Evaluation of the Behavior of GRS Walls with Segmental Block Facing under Working Stress Conditions” J. Geotech. Geoenviron. Eng. 04014109 pp.1-8.

39. Ehrlich, M. and Mirmoradi, S.H., (2015), “Modeling of the compaction-induced stress on reinforced soil walls”, Geotext. Geomembr. 43, pp. 82-88.

40. Ehrlich, M. and Mirmoradi, S.H., (2016), Closure to “Numerical Evaluation of the Behavior of GRS Walls with Segmental Block Facing under Working Stress Conditions” by S. H. Mirmoradi and M. Ehrlich. J. Geotech. Geoenviron. Eng. 07016002 pp. 1-3.

41. Elias, V., Christopher, B.R., and Berg, R.R., (2001), “Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design and Construction Guidelines”, Report No. FHWA-NHI-00-043, Federal Highway Administration.

42. Farzaneh, O. and Seyedi Hosseininia, E., (2010), “Development and validation of a two-phase model for reinforced soil by considering nonlinear behavior of matrix”, Journal of Engineering Mechanics, Vol. 136, No. 6, pp. 721-735.

43. Gotteland, P., Gourc, J.P., and Villard, P., (1997), “Geosynthetics Reinforced Structures as Bridge Abutments: Full Scale Experimentation and Comparison with Modelisations”, Mechanically Stabilized Backfill (Wu, editor) A. A. Balkema Publishers, Rotterdam, The Netherlands pp. 25–34.
44. Guler, E., Hamderi, M., and Demirkan, M.M., (2007) “Numerical analysis of reinforced soilretaining wall structures with cohesive and granular backfills” Geosynth. Int. 14 (No. 6), pp. 330-345.

45. Holtz, R.D., Christopher, B.R., and Berg, R.R., (1997), “Geosynthetic engineering”, BiTech Publishers, Richmond, B.C.

46. Huabei Liu, M.ASCE and Guangqing Yang, (2016), “Discussion of “Numerical Evaluation of the Behavior of GRS Walls with Segmental Block Facing under Working Stress Conditions”, by S. H. Mirmoradi and M. Ehrlich. J. Geotech. Geoenviron. Eng. 07016001 pp. 1-2.

47. Ioannis Zevgolis and Philippe Bourdeau, (2007), “Mechanically stabilized earth wall abutments for bridge support”, Soil Compaction and Stabilization” 62-6.

48. Janbu, N., (1954), “Stability Analysis of Slopes with Dimensionless Parameters”, Harvard Soil Mechanics Series, No. 46.

49. Janbu, J., (1963), “Soil Compressibility as Determined by Oedometer and Triaxial Tests”, Proc. ECSMFE Wiesbaden, Vol. 1, pp. 19-25.

50. Jewell, R.A., (1980), “Some Effects of Reinforcement on the Mechanical Behavior of Soils” PhD thesis. Univ. of Cambridge, Cambridge, England.

51. Jewell, R.A., (1991), “Application of Revised Design Charts for Steep Reinforced Slopes”, Geotextiles and Geomembranes, Vol. 10, No. 3, pp. 203-233.

52. Johnston, I. and Lam, T., (1989), “Shear Behavior of Regular Triangular Concrete/Rock Joints” J. Geotech. Engrg., 10.1061/(ASCE)0733-9410(1989)115:5(728), pp. 728-740.

53. Kanazawa, Y., Ikeda, K., Murata, O., Tateyama, M, and Tatsuoka, F., (1994) “Geosynthetic-Reinforced Soil Retaining Walls for Reconstructing Railway Embankment at Amagasaki”, Recent Case Histories of Permanent Geosynthetic-Reinforced Soil Retaining Wall (Tatsuoka and Leshchinsky, editors) A. A. Balkema Publishers, Rotterdam, The Netherlands pp. 233–242.

54. Karpurapu, R.G., and Bathurst, R.J., (1995), “Behaviour of geosynthetic reinforced soil retaining walls using the finite element method”, Computers and Geotechnics, 17(3): pp. 279–299.

55. Ketchart, K. and Wu, J.T.H., (1997), “Performance of Geosynthetic-Reinforced Soil Bridge Pier and Abutment”, Mechanically Stabilized Backfill (Wu, editor) A. A. Balkema Publishers, Rotterdam, The Netherlands pp. 101–116.

56. Kim, M.K. and Lade, P.V., (1988a), “Single hardening constitutive
model for frictional materials. II: Yield criterion and plastic work contours”, Comput. Geotech., 6(1), pp. 13–29.

57. Kim, M.K. and Lade, P.V., (1988b), “Single hardening constitutive
model for frictional materials. III: Comparisons with experimental data” , Comput. Geotech., 6(1), pp. 31–47.

58. Kondner R.L. and Zelasko J.S., (1963), “A hyperbolic stress-strain formulation of sand”, Proceedings of the 2nd Pan American CSMFE, Brazil, 1: 289324.

59. Lee, W.F., (2000), “Internal Stability Analyses of Geosynthetic Reinforced Retaining Walls”, PhD thesis, University of Washington, Seattle, Washington, USA.

60. Leshchinsky, D. and Boedeker, R.H., (1989), “Geosynthetic Reinforced Soil Structures”, Journal of Geotechnical Engineering, ASCE, Vol. 115, No. 10, pp. 1459-1478.
61. McGown, A., Andrawes, K., Yeo, K., and Dubois, D., (1984a), “The load-strain-time behaviour of Tensar geogrids”, In Polymer grid reinforcement. Thomas Telford, London, pp. 11–17.

62. Mirmoradi, S.H. and Ehrlich, M., (2014a), “Modeling of the compaction-induced stresses in numerical analyses of GRS walls”, Int. J. Comput. Methods (IJCM) Special Issue ”Comput. Geomech.” 11 (2), 14.

63. Mirmoradi, S.H. and Ehrlich, M., (2014b), “Numerical evaluation of the behavior of GRS walls with segmental block facing under working stress conditions”, ASCE J. Geotech. Geoenviron. Eng.

64. Miyata, K. and Kawasaki, H., (1994), “Reinforced Soil Retaining Walls by FRP Geogrid”, Recent Case Histories of Permanent Geosynthetic- Reinforced Soil Retaining Wall (Tatsuoka and Leshchinsky, editors), A. A. Balkema Publishers, Rotterdam, The Netherlands, pp. 253–257.

65. Morgenstern, N.R. and Price, V.E., (1965), “The Analysis of the Stability of Generalized Slip Surfaces”, Geotechnique, London, U.K., 15, pp. 79-93.

66. Morrison, K.F., Harrison, F.E., Collin, J.G., Dodds, A., and Arndt, B., (2006), “Shored Mechanically Stabilized Earth (SMSE) Wall Systems Design Guidelines”, Report FHWA-CFL/TD-06-001. Federal Highway Administration, Lakewood, Colorado, pp. 210.

67. National Concrete Masonry Association (NCMA), (1997), “Design manual for segmental retaining walls”, 2nd printing. National Concrete Masonry Association, Herndon, Va.

68. National Concrete Masonry Association (NCMA), (2009), “Specification for Design and Construction of Load-Bearing Masonry”, 14th. St. N., Arlington, Va. 22201.

69. PLAXIS, B.V., (2005). “Plaxis 2D-Version 8 Manual.” Balkema, Rotterfam, The Netherlands.

70. Panji Utomo, (2010), “Evaluation of Various Design Methods for Predicting Reinforcement Tension within Geosynthetic-Reinforced Soil Structures”, Ph.D. Thesis, National Taiwan University of Science and Technology.

71. Perkins, S.W and Lapeyre, J.A., (1997), “In-Isolation Strain Measurement of Geosynthetics in Wide-Width Strip Tension Test”, Geosynthetics International, Vol. 4, No. 1, pp. 11-32.

72. P. von Soos., (1980), “Properties of soil and rock”, Grundbautaschenbuch, Part 4 (4thed.), Ernst and Sohn, Berlin (in German).

73. R. de Borst and Vermeer, P.A., (1984), “Non-Associated Plasticity for Soils, Concrete and Rock”, Heron, 29(3), pp. 3-64.

74. Riccio, M., Ehrlich, M. and Dias, D., (2014), “Field monitoring and analyses of the response of a block-faced geogrid wall using fine-grained tropical soils”, Geotext. Geomembr. 42 (2), pp. 127-138.

75. Roman D Hryciw., (1997), “Conventional site characterization”, Proceeding of the 5th Great Lakes Geotechnical/Geoenvironment Conference: Site Characterization for Geotechnical and Geoenvironment Problems.

76. Sabatini, P.J., Pass, D.G., and Bachus, R.C., (1999), “Ground anchors
and anchored systems”, Geotechnical Engineering Circular 4, FHWA SA-99-015, Federal Highway Administration (FHWA), Washington, D.C.80. Collin, J.G., (1986), “Earth wall design”, Ph.D. thesis, University of California, Berkeley, Calif.

77. Schanz, T., Vermeer, P.A. and Bonnier, P.G., (1999), “The Hardening-Soil Model: Formulation and verification” In: R.B.J. Brinkgreve, Beyond 2000 in Computational Geotechnics. Balkema, Rotterdam: pp. 281-290.

78. Schmertmann, G.R., Chouery-Curtis, V.E. Johnson, R.D., and Bonapart R., (1987),“Design Charts for Geogrid-Reinforced Soil Slopes”, Proc., Geosynthetics’ 87 Conf., New Orleans, La., pp. 108-120.

79. Scotland, I., Dixon, N., Frost, M.,Wackrow, R., Fowmes,G., and Horgan,G., (2014), “Measuring deformation performance of geogrid reinforced structures using a terrestrial laser scanner”, Proceedings of 10th International Conference of Geosynthetics, Berlin, Germany.

80. Scotland, I., Dixon, N., Frost, M., Fowmes, G., and Horgan, G., (2015). “Modelling deformation during the construction of wrapped geogrid-reinforced structures”, Geosynthetics International.

81. Spencer, E, (1967), “A Method of Analysis of the Stability of Embankments Assuming Parallel Inter-Slice Forces”. Geotechnique, 24(4), pp. 661-665.

82. Tatsuoka, F., Uchimura, T., Tateyama, M., and Koseki, J., (1997), “Geosynthetic-Reinforcement Soil Retaining Walls as Important Permanent Structures”, Mechanically Stabilized Backfill (Wu, editor) A. A. Balkema Publishers, Rotterdam, The Netherlands, pp. 3–24.

83. Werner, G. and Resl, S., (1986), “Stability Mechanisms in Geotextile Reinforced Earth-Structures”, III International Conference on Geotextiles, Vienna, Austria, Vol. 4, pp. 1131–1135.

84. Xihua Chu, Cun Yu, and Yuanjie Xu., (2012), “The dilatancy and numerical simulation of failure behavior of granular materials based on Cosserat model”, Interaction and Multiscale Mechanics, Vol. 5, No. 2, pp. 157-168.

85. Yan Yu, Richard J. Bathurst, and Yoshihisa Miyata., (2014), “Numerical analysis of a mechanically stabilized earth wall reinforced with steel strips”, Soils and Foundations. Volume 55, Issue 3, June 2015, pp. 536–547.

86. Yang, K-H., (2009), “Stress Distribution within Geosynthetic-Reinforced Soil Structures”, Ph.D. Thesis, The University of Texas at Austin.

87. Yeo, K.C., (1985), “The behaviour of polymeric grids used for soil reinforcement”, Ph.D. Thesis, University of Strathclyde, Glasgow, U.K.

88. Zornberg, J.G., (2003), “Peak versus Residual Shear Strength in Geosynthetic-Reinforced Soil Design”, Discussion and Response 4. Geosynthetics International, December, Vol. 10, No. 6, pp. 234-237.
89. 建築工程部建築科學研究院、建築理論及歷史研究室中國建築史編輯委員會編(1962),「中國建築簡史」。

90. 周南山等(2000),「地工合成材料應用於加勁擋土牆結構之相關規範與招標措施」,行政院公共工程委員會委託研究報告。

91. 財團法人臺灣營建研究院(2008),「加勁擋土結構應用於交通土木工程規範草案之研究」,成果報告書。

92. 內政部營建署(2008),「台灣加勁擋土牆設計及施工規範」。

QR CODE