簡易檢索 / 詳目顯示

研究生: 李俊彥
Chun-yen Li
論文名稱: 整套型變電站之弧光保護分析
Analysis of Arc Flash Protection for Unit Substation
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 黃培華
none
洪穎怡
none
陳在相
Tsai-Hsiang Chen
蕭弘清
Horng-Ching Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 100
中文關鍵詞: 弧光電流弧光能量弧光保護個人防護裝備整套型變電站
外文關鍵詞: arc fault currents, incident energy, protective device coordination study, personal protective equipment, unit substation
相關次數: 點閱:266下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文研究整套型變電站的弧光保護分析,主要探討個人安全與設備保護。個人安全方面以整套型變電站為研究對象,透過IEEE-1584之建議公式,進行弧光電流、弧光能量與弧光危險距離模擬計算,依據NFPA-70E危險等級的規定,預測其危險等級,及評估個人防護裝備要求,確保其工作安全。設備保護方面由上述之弧光故障分析,進一步針對整套型變電站探討不同之偵測方式與保護方法,並蒐集相關法規,佐以實際操作需求與經濟效益分析,建立弧光保護參考準則。研究發現:480V整套型變電站變壓器容量1,000kVA以下,將二次側主斷路器短延時保護設定在200ms以內時,個人防護裝備可降低至「危險等級2」;當加裝弧光保護,則其故障清除時間可控制在100ms以內,所以只要變壓器容量不超過3,000kVA,個人防護裝備亦可降低至「危險等級2」。


This thesis focuses on the arcing fault hazard analysis and protection for unit substation. Two main topics are extensively studied on this paper. (1)Personal safety: Based on IEEE Std 1584, establish a spread sheet to estimate the arcing fault currents, incident energy and flash-protection boundary for the subject unit substations. The results are used for predicting the hazard class and evaluating the personal protective equipment (PPE) required by NFPA-70E to ensure personal safety in the working area. (2)Equipment protection: With the estimated arcing fault data the various detection schemes and protection methods are commonly discussed for the subject unit substations. Furthermore, certain relevant codes, operation practices and economical feasibility are also reviewed. Finally, a suggestion is derived to provide design guidelines for selecting proper arcing protection scheme and the tripping devices setting. It conclude that in order to limit the HRC of PPE to class 2, for transformer with capacity less than 1,000kVA the short time delay setting of main circuit braker in secondary of transfer must within 200ms. Similarly, for transformer with capacity less than 3,000kVA if the fault cleaning time can be controlled within 100ms by installing the dedicated arcing protection devices, the HRC of PPE also can limit to class 2.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究貢獻 3 1.4 研究方法與步驟 4 1.5 論文架構 6 第二章 弧光短路之因果關係 7 2.1 前言 7 2.2 弧光短路導因與影響 7 2.2.1 弧光短路之導因 7 2.2.2 弧光短路之物理現象 8 2.2.3 弧光短路之影響 9 2.3 弧光能量與個人防護裝備 10 2.4 弧光分析之國際標準 12 2.5 弧光保護與減少弧光能量方法 17 2.5.1 弧光保護規定 18 2.5.2 弧光保護方法 19 2.5.3 限制弧光電流 21 2.5.4 縮短弧光電流燃燒時間 21 2.6 本章小結 22 第三章 弧光電流與變壓器容量之關係 23 3.1 前言 23 3.2 整套型變電站 23 3.2.1 高壓開關 25 3.2.2 變壓器 25 3.2.3 低壓開關 25 3.2.4 變壓器之短路電流 27 3.3 弧光分析之模型 29 3.3.1 變電站弧光分析簡化方式 29 3.3.2 變電站弧光短路分析步驟 31 3.4 變壓器容量與弧光能量 34 3.4.1 480V接地系統之弧光電流與短路電流 34 3.4.2 電壓4.16kV接地系統之弧光電流與短路電流 35 3.4.3 變壓器容量與弧光能量特性 35 3.5 變壓器容量與危險等級 37 3.5.1 變壓器容量含倒灌電流與危險等級 37 3.5.2 變壓器容量無倒灌電流與危險等級 38 3.6 本章小結 39 第四章 整套型變電站之傳統保護分析 40 4.1 前言 40 4.2 變電站之保護協調 40 4.2.1 非接地系統 41 4.2.2 接地系統 42 4.3 電驛系統與弧光電流燃燒時間 43 4.3.1 反時性過電流電驛 43 4.3.2 斷路器額定啟斷時間 45 4.3.3 開關箱燃燒時間限制 45 4.3.4 保護協調時間間隔 47 4.4 過電流電驛弧光保護原則 48 4.4.1變壓器過電流保護之規定 48 4.4.2過電流電驛的保護協調原則 49 4.4.3低壓斷路器保護設定原則 50 4.4.4 短路電流與弧光能量 51 4.4.5 短路電流與弧光危險距離 53 4.5 弧光故障之分析 54 4.5.1 變電站傳統弧光故障保護之範例系統 55 4.5.2 低壓側弧光故障之保護分析 56 4.5.3 高壓側弧光故障之保護分析 61 4.6 本章小結 63 第五章 裝設弧光保護設備之整套型變電站保護分析 65 5.1 前言 65 5.2 弧光保護原理 65 5.2.1 弧光保護系統架構 66 5.2.2 弧光保護電驛 67 5. 3 弧光保護功能與特色 68 5.3.1 弧光偵測保護功能 68 5.3.2 故障清除時間特色 69 5.4 弧光保護模擬分析 70 5.4.1 非接地系統4.16 kV弧光分析 70 5.4.2 4.16kV接地系統弧光分析 73 5.4.3 480V接地系統弧光分析 76 5. 5 本章小結 80 第六章 結論與建議 82 6.1 結論 82 6.2 未來研究方向 83 參考文獻 84 作者簡介 87

[1] 經濟部工業局全球資訊網 http://www.moeaidb.gov.tw。
[2] IEEE Std-1584-2002, Guide for Performing Arc-FLASH Hazard Calculation, 2002.
[3] NFPA-70E, Standard for Electrcal Safety Requirements for Employee Workplaces, 2000.
[4] NFPA-70E, Standard for Electrcal Safety Requirements for Employee Workplaces, 2004.
[5] Ammerman, R. F., P. K. Sen and Nelson J. P., “Arc Flash Hazard Incident Energy Calculations a Historical Perspective and Comparative Study of the Standards: IEEE-1584 and NFPA-70E,” PCIC Petroleum and Chemical Industry Technical Conference, pp.1-13, Sept. 2007.
[6] 辜志承,「弧光保護與過電流電驛之整合」,電機月刊,第一四七期,第170∼177頁,民國92年。
[7] Dugan, T. B., “Reducing the Flash Hazard,” IEEE Cement Industry Technical Conference, pp. 32-41, April 2006.
[8] Doan, D. R., J. Slivka and C. Bohrer, “A Summary of Arc Flash Hazard Assessments and Safety Improvements,” IEEE Petroleum and Chemical Industry Technical Conference, pp.1-7, Sept. 2007.
[9] 楊維寧,統計學,第406∼420頁,新陸書局股份有限公司,民國96年。
[10] 李建基,「開關設備中的故障電弧及其防護」,電力設備,第五卷,第二期,第41∼43頁,民國93年。
[11] 張瑞村,數位局部放電量測應用於高壓電纜終端接頭絕緣狀態之評估,國立台灣科技大學碩士論文,民國94年。
[12] http://www.lanl.gov/safety/electrical/docs/subcontractor
[13] http://www.ewbengingineering.com
[14] Latarjet, J., “A Simple Guide to Burn Treament,” Burns, Vol. 21, pp.221-225, 1995.
[15] Tinsley, H. W., M. Hodder and A. M. Graham, “Beyond the Calculations:Life After Arc Flash Analysis,” Pulp and Paper Industry Technical Conference, pp.250-256, June 2007.
[16] Nation Electrical Code (NEC), 2002.
[17] Das, J. C., “Design Aspects of Industrial Distribution Systems to Limit Arc Flash Hazard,” IEEE Transactions on Industry Applications,
Vol. 41, Issue:6,pp.1467-1475, Nov./Dec. 2005.
[18] Crnko, T. M., “Flash Hazard and Design Considerations for its Reduction,” IAS Industry Applications Conference, Vol. 3, pp.1928-1937, Oct. 2005.
[19] Nepveux, F., “Use of Instantaneous Trip Functions and Current Limiting Fuses to Reduce Arc Flash Energy,” Pulp and Paper Industry Technical Conference, pp.1-5, June 2006.
[20] Gammon, T. and J. Matthews, “The Application of a Current-Dependent Arc Model to Arcing at a Main Distribution Panel, a sub-panel and a branch circuit,” Southeast Conference Proceedings IEEE, pp.72-78, April 2001.
[21] Holbach, J., “Mitigation of Arc Flash Hazard by Using Protection Solution”, Protective Relay Engineers, pp.239-250, March 2007.
[22] Gregory, G. D., I. Lyttle and C. M. Wellman, “Arc Flash Calculations in Systems Protected by Low-voltage Circuit Breakers,” IEEE Transactions on Industry Applications, Vol.39, Issue:4, pp.1193-1199, July/Aug. 2003.
[23] Brown, W. A. and R. Shapiro, “A Comparison of Arc-Flash Incident Energy Reduction Techniques Using Low-Voltage Pcircuit Breakersowe,” IEEE Industrial and Commercial Power Systems Technical Conference, pp.1-9, April 2006.
[24] Hu, S. C. and Y. k. Chuah, “Power Consumption of Semiconductor Fabs in Taiwan Energy,” the International Journal of "Energy". Vol. 28, pp.895-907, 2003.
[25] Rooks, J. A. and N. E. Rowe, “Could the New High Interrupting Capacity Circuit Breaker Change Your Distribution Systems ,” Pulp and Paper Industry Technical Conference, pp.54-58, June 1988.
[26] Palizzi, M. and S. Kabra, “How to Form a Bounding Arc Flash Study for Your Site,” IAS Industry Applications Conference, Vol. 1, pp.432-441, Oct. 2005.
[27] 李宏仁,實用保護電驛,第6∼7頁,全華科技圖書股份有限公司,民國91年。
[28] NEMA PB 2.2, Application Guide for Ground Fault Protective Devices for Equipment, pp.20-32, 2004
[29] 薛小生、黃郁東,工業配電,第356頁,大中國圖書公司,民國95年。
[30] IEEE-Std-242-1986, Recommended Practice for Protection and Coordination, 1986.
[31] IEEE Std C37.91-2000, IEEE Guide for Protective Relay Applications to Power Transformers, 2000.
[32] VAMP公司網站 http://www.vamp.
[33] ABB公司網站 http://www.abb.com.tw/product.

無法下載圖示 全文公開日期 2011/07/14 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE