簡易檢索 / 詳目顯示

研究生: 呂玉如
Yu-Ju Lu
論文名稱: 具有異質伺服器之雲端計算中心研究
A Study on Cloud Computing Centers with Heterogeneous Servers
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 林永松
Yeong-Sung Lin
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 131
中文關鍵詞: 雲端計算中心異質伺服器平均服務速率伺服器門檻壅塞門檻平均系統延遲
外文關鍵詞: Cloud computing center, heterogeneous server, average service rate, server threshold, congestion threshold, average system delay
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於雲端計算對於時間和能源的高效率性、資料進接的靈活性、簡單容易使用以及維護的容易性,所以對於雲端計算的需求上升。明顯地,當需求上升時,雲端計算中心的伺服器數目也必須增加。而新購買的伺服器的計算能力可能會不同於現有的伺服器。因此,雲端計算中心可能具有異質的伺服器,也就是說每個伺服器的計算能力可能不同,所以一個使用者在不同的伺服器可能會有不同的服務時間。在這篇研究中,我們考慮三種不同的情境:具有一個伺服器門檻的M⁄Mi⁄C⁄K、具有多個伺服器門檻的M⁄Mi⁄C⁄K以及具有一個伺服器門檻和兩個壅塞門檻的M⁄Mi⁄C⁄K。我們推導所考慮系統的解析模型。我們利用疊代演算法來求得穩態機率分佈和計算感興趣的效能指標。我們感興趣的效能指標是平均系統數目、平均佇列長度,遺失機率、成功送達率、平均系統延遲與平均佇列延遲。我們研究各種系統參數對於不同系統效能的影響,例如平均抵達速率、平均服務速率、伺服器門檻、與壅塞門檻。我們也呈現傳統M⁄Mi/C⁄K 模型和M⁄Mi/C⁄K的上下限模型的效能做為比較。我們發現在適當的系統參數下,具有一個伺服器門檻的M⁄Mi⁄C⁄K會有較好的平均系統延遲相對於傳統的M⁄Mi⁄C⁄K。最後,我們自行撰寫電腦模擬程式來驗證解析結果的正確性。


    The requirement for cloud computing is increasing due to its high efficiency in time and energy, flexibility in data access, simple and easy use, and ease of maintenance. Obviously, when the demand increases, the number of servers in a cloud computing center must increase. The computing power of a newly bought server may be very different from those of the existing servers. That is, the cloud computing centers may have heterogeneous servers, where the computing power of each server may be different, and thus the service time of one job at different servers may be different. In this work, we study how to minimize the average system delay in cloud computing center with heterogeneous servers, where each server may have a different average service rate. We consider three different scenarios: M⁄Mi⁄C⁄K with single server threshold, M⁄Mi⁄C⁄K with multiple server thresholds, and M⁄Mi⁄C⁄K with single server threshold and double congestion thresholds. The analytical models are derived for the systems considered. We develop an iterative algorithm to find the steady state probability distribution and the performance measures of interest are computed. The performance measures of interest are average number in system, average queue length, loss probability, throughput, average system delay, and average queueing delay. The effect of various system parameters on different performance measures are studied, e.g., the mean arrival rate, the mean service rate, the server threshold, and congestion threshold. For comparison, we present the performance of not only the traditional M⁄Mi⁄C⁄K but also the lower (upper) bound models. It is shown that M⁄Mi⁄C⁄K with single server threshold outperforms M⁄Mi⁄C⁄K in terms of the average system delay with the appropriate system paremeters. Finally, the computer simulation is written to verify the accuracy of the analytical results.

    1. Introduction 2. System model 3. Analytical model 4. Simulation model 5. Numerical results 6. Conclusions References

    [1] W. Kim, “Cloud Computing: Today and Tomorrow,” Journal of Object Technology, vol. 8, pp. 65–72, Jan. 2009.
    [2] L. Wang, G. Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu, “Cloud Computing: a Perspective Study,” New Generation Computing,vol. 28, no. 2, pp. 137–146, Apr. 2010.
    [3] G. Metri, S. Srinivasaraghavan, W. Shi, and M. Brockmeyer, “Experimental Analysis of Application Specific Energy Efficiency of Data Centers with Heterogeneous Servers,” 2012 IEEE Fifth International Conference on Cloud Computing, pp. 786-793, June 24-29, 2012.
    [4] X. Lu, F. Kong, J. Yin, X. Liu, H. Yu, and G. Fan, “Geographical Job Scheduling in Data Centers with Heterogeneous Demands and Servers,” 2015 IEEE 8th International Conference on Cloud Computing, pp. 413-420, June 27-July 2, 2015.
    [5] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini, “Energy Conservation in Heterogeneous Server Clusters,” 10th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, Chicago, IL, pp. 186–195, June 15-17, 2005.
    [6] X. Zhang, J. Lu, and X. Qin, “Energy Consumption Characterization of Heterogeneous Servers,” 8th ChinaGrid Annual Conference, pp. 14-21, Aug. 2013.
    [7] N. Gharbi, L. Charabi, and L. Mokdad, “Performance Evaluation of Heterogeneous Servers Allocation Disciplines in Networks with Retrials,” 2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety, and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software and Systems (ICESS), pp. 904-907, Aug. 24-26, 2015.
    [8] F. S. Q. Alves, H. C. Yehia, L. A. C. Pedrosa, F. R. B. Cruz, and L. Kerbache, “Upper Bounds on Performance Measures of Heterogeneous M/M/c Queues,” Mathematical Problems in Engineering, vol. 2011, May 2011.
    [9] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. Wiley-Interscience, third Edition, Feb. 1998.
    [10] H. Narman, M. S. Hossain, and M. Atiquzzaman, “Multi- Class Traffic Analysis of Single and Multi-band Queuing System,” IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, pp. 1422-1427, Dec. 9-13, 2013.
    [11] W. Lin and P.R. Kumar, “Optimal Control of a Queueing System with Two Heterogeneous Servers,” IEEE Transactions on Automatic Control, vol. 29, pp. 696–703, Aug. 1984.
    [12] H.P. Luh and I. Viniotis, “Threshold Control policies for Heterogeneous Server Systems,” Mathematical Methods of Operations Research, vol. 55, issue 1, pp. 121-142, March. 2002.
    [13] V. Rykov and D. Efrosinin, “Optimal Control of Queueing Systems with Heterogeneous Servers,” Queueing Systems, Vol. 46, Issue 3-4, pp. 389-407, 2004
    [14] H. Narman, M. S. Hossain, and M. Atiquzzaman, “h-DDSS: Heterogeneous Dynamic Dedicated Servers Scheduling in Cloud Computing,” IEEE International Conference on Communications (ICC), Sydney, NSW, pp. 3475-3480, June 10-14, 2014.
    [15] J. Huang, D. Du, Q. Duan, Y. Sun, Y. Yin, T. Ahou, and Y. Zhang, “Modeling and Analysis on Congestion Control in the Internet of Things,” IEEE International Conference on Communications (ICC), pp. 434-439, June 10-14, 2014.

    無法下載圖示 全文公開日期 2021/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE