簡易檢索 / 詳目顯示

研究生: 姚嘉祺
Chia-chi Yao
論文名稱: 利用數位電視訊號於雙站被動雷達系統之結合到達時差與到達角度定位研究
A study on joint time-difference-of-arrival and angle-of-arrival localization in bistatic passive radar system using DVB-T signal
指導教授: 劉馨勤
Hsin-chin Liu
口試委員: 焦興也
none
謝清淞
none
廖文照
Wen-jiao Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 119
中文關鍵詞: 被動式雷達模稜函數多重訊號分辨演算法波束形成技術軟體定義無線電
外文關鍵詞: Passive radar, Ambiguity function, Multiple Signal Classification algorithm, beamforming, Software Defined Radio
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 與主動雷達系統不同,被動雷達系統僅需專屬接收機,即可偵測空中目標物,本論文基於雙站被動式雷達系統架構下,為了偵測未知目標物,結合到達角度法(AOA)與到達時差法(TDOA)的資訊。利用多重訊號分辨演算法(MUSIC)估測目標物角度(AOA),再配合模稜函數(Ambiguity function)估測出目標物的距離(TDOA)與都普勒偏移,結合以上3個參數可定位出目標物的位置。
    本論文包含硬體實作與軟體模擬兩部份;硬體實作部份,利用LYRTECH所開發之軟體無線電平台實現多重訊號分辨演算法,並使用最小平方法(least square method) 補償由射頻前端模組所造成的相位與增益。
    模擬方面,首先,模擬在數位電視訊號下之模稜函數,此函數因數位電視訊號內引導訊號與保護區間而產生干擾峰值。為了改善模稜函數精準度,本論文消除這些干擾峰值;同時,加入窗型技術以抑制模稜函數旁波。接下來本論文提出利用波束形成技術(beamforming)與最小平方法在多目標物情況下可對應角度、距離、都普勒偏移3個參數。模擬結果顯示,此參數對應方式在多目標物時可有效的決定目標物的位置。


    Unlike an active radar system, a passive radar system only requires a dedicate receiver end to detect airborne targets. To locate the unknown targets, we jointly combine Angle-of-Arrival and Time-Different-of-Arrival information. In this work, we use Multiple Signal Classification algorithm to estimate angle of arrival information of targets, and use ambiguity function to detect targets ranges and Doppler shifts in a bistatic passive radar system. Combining these parameters, we can locate positions of targets.
    This thesis contains hardware implementation and software simulations. In hardware implementation, we use LYRTECH’s Software Defined Radio platform to implement Multiple Signal Classification algorithm, and use the least square method to compensate the phase and gain caused by RF front-end.
    In simulations, we first simulate an ambiguity function for digital video broadcasting terrestrial signal, which results in unwanted deterministic peaks due to the guard interval and the pilots in the digital video broadcasting terrestrial passive radar. In order to improve the accuracy of ambiguity function, we remove these unwanted peaks; in the meantime, we also apply a window function to further reduce the ambiguity function sidelobes. Second, we propose a method using beamforming technique and least square method to mapping angles, ranges, and Doppler shifts for multiple airborne targets. Simulation results shows that the proposed mapping scheme can effectively determine positions of multiple targets.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 引言 1 1.2 研究動機與目的 1 1.3 內容章節概述 2 第2章 雙站被動雷達 3 2.1 雙站被動式雷達架構 3 2.2 定位技術 4 2.3 多重訊號分辨(Multiple Signal Classification, MUSIC)演算法 8 2.4 模稜函數 12 2.5 DVB-T數位電視訊號與模稜函數之分析 15 2.5.1 DVB-T數位電視訊號 15 2.5.2 DVB-T數位電視訊號與模稜函數之分析 20 第3章 目標物偵測與實作 26 3.1 雙站被動式雷達系統架構 26 3.2 實作多重訊號分辨演算法所遇到的問題與解決方案 30 3.2.1 增益與相位校正 30 3.2.2 多重訊號分辨演算法 40 3.3 模稜函數研究 43 3.3.1 快速演算法實現模稜函數 43 3.3.2 旁波抑制技術 45 3.3.3 DVB-T數位電視訊號模稜函數干擾峰值抑制技術 48 3.4 角度估測與模稜函數參數對應之解決方案 51 3.4.1 問題描述 51 3.4.2 參數對應解決方案 53 第4章 實驗與模擬分析結果 60 4.1 多重訊號分辨演算法實驗 60 4.1.1 無反射實驗室 60 4.1.2 戶外量測 62 4.2 模稜函數實驗 67 4.3 角度估測與模稜函數參數對應之解決方案模擬分析 72 4.3.1 環境設定 72 4.3.2 模擬方式 76 4.3.3 改變目標物SNR效能分析 78 4.3.4 最小平方法點數對效能之影響 83 4.3.5 改變波束形成器點數 86 4.3.6 DOA演算法誤差 89 4.3.7 目標物角度相近 93 4.3.8 天線個數對效能影響 97 4.3.9 總效能評估 100 第5章 結論及未來展望 103 參考文獻 105

    [1]H. D. Griffiths and N. R. W. Long, "Television-based bistatic radar," IEE Proc. Communications on Radar and Signal Processing, vol. 133, pp. 649-657, 1986.
    [2]P. E. Howland, "Target tracking using television-based bistatic radar," IEE Proc. Radar, Sonar and Navigation, vol. 146, pp. 166-174, 1999.
    [3]C. Bongioanni, et al., "Performance analysis of a multi-frequency FM based Passive Bistatic Radar," in Proc. of the 2008 IEEE Conference on Radar, 2008, pp. 1-6.
    [4]P. E. Howland, et al., "FM radio based bistatic radar," IEE Proc. Radar, Sonar and Navigation, vol. 152, pp. 107-115, 2005.
    [5]D. Poullin, "Passive detection using digital broadcasters (DAB, DVB) with COFDM modulation," IEE Proc. Radar, Sonar and Navigation, vol. 152, pp. 143-152, 2005.
    [6]R. Saini and M. Cherniakov, "DTV signal ambiguity function analysis for radar application," IEE Proc. Radar, Sonar and Navigation, vol. 152, pp. 133-142, 2005.
    [7]J. M. Thomas, et al., "Ambiguity function analysis of digital radio mondiale signals for hf passive bistatic radar," Electronics Letters, vol. 42, pp. 1482-1483, 2006.
    [8]D. K. P. Tan, et al., "Passive radar using Global System for Mobile communication signal: theory, implementation and measurements," IEE Proc. Radar, Sonar and Navigation, vol. 152, pp. 116-123, 2005.
    [9]M. Cherniakov, et al., "Galileo signal-based bistatic system for avalanche prediction," in Proc. of the IEEE IGARSS '03, 2003, pp. 784-786.
    [10]J. Homer, et al., "Passive bistatic radar sensing with LEOS based transmitters," in Proc. of the 2002 IEEE International IGARSS '02 2002, pp. 438-440.
    [11]A. J. Weiss, "On the accuracy of a cellular location system based on RSS measurements," IEEE Trans. Vehicular Technology, vol. 52, pp. 1508-1518, 2003.

    [12]K. W. Cheung, et al., "Least squares algorithms for time-of-arrival-based mobile location," IEEE Trans. Signal Processing, vol. 52, pp. 1121-1130, 2004.
    [13]H. Ni, et al., "A TDOA location scheme in OFDM based WMANs," IEEE Trans. Consumer Electronics, vol. 54, pp. 1017-1021, 2008.
    [14]C. D. Wann and H. C. Chin, "Hybrid TOA/RSSI Wireless Location with Unconstrained Nonlinear Optimization for Indoor UWB Channels," in Proc. of the Wireless Communications and Networking Conference(WCNC) 2007, 2007, pp. 3940-3945.
    [15]R. T. Juang, et al., "Hybrid SADOA/TDOA mobile positioning for cellular networks," IET Communcation, vol. 1, pp. 282-287, 2007.
    [16]C. Li and Z. Weihua, "Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems," IEEE Trans. Wireless Communications, vol. 1, pp. 439-447, 2002.
    [17]E. Hanle, "Survey of bistatic and multistatic radar," IEE Proc. Communications, Radar and Signal Processing, vol. 133, pp. 587-595, 1986.
    [18]S. Chen, et al., "Study of location based on T-R and T/R-R mode in Bistatic Radar," in Proc. of the 2010 CIE '06 International Conference on Radar, 2006, pp. 1-5.
    [19]A. Farina and E. Hanle, "Position Accuracy in Netted Monostatic and Bistatic Radar," IEEE Trans. Aerospace and Electronic Systems, vol. AES-19, pp. 513-520, 1983.
    [20]Y. He, et al., "Theorem for the combination of bistatic radar measurements using least squares," IEEE Trans. Aerospace and Electronic Systems, vol. 39, pp. 1441-1445, 2003.
    [21]葉秀伶, "方位角偵測演算技術與雷達定位應用," 碩士, 電機工程研究所, 國立中正大學, 2010.
    [22]盧致遠, "用梯度陡降演算法處理雷達陣列訊號," 碩士, 電機工程研究所, 國立中正大學, 2010.
    [23]J. Tsao and B. D. Steinberg, "Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique," IEEE Trans. Antennas and Propagation, vol. 36, pp. 543-556, 1988.

    [24]J. Li and P. Stoica, "Efficient mixed-spectrum estimation with applications to target feature extraction," IEEE Trans. Signal Processing, vol. 44, pp. 281-295, Feb 1996.
    [25]S. S. Ram and H. Ling, "Through-Wall Tracking of Human Movers Using Joint Doppler and Array Processing," IEEE Geoscience and Remote Sensing Letters, vol. 5, pp. 537-541, 2008.
    [26]S. S. Ram, et al., "Human Tracking Using Doppler Processing and Spatial Beamforming," in Proc. of the 2007 IEEE Conference on Radar, 2007, pp. 546-551.
    [27]C. Y. Wei, et al., "Target location based on range-difference information from a multistatic radar system," in Proc. of the ICMMT '98 1998, pp. 456-459.
    [28]C. Y. Wei, et al., "Analysis and simulation for the location and length of thin cylindrical target with FMCW multistatic radar system," in Proc. of the IEEE International Conference on Signal Processing 1998, pp. 1501-1504.
    [29]W. Yang and C. Wei, "Target location and speed estimation by multistatic radar system using maximum likelihood approach," in Proc. of the 5th International Conference on Signal Processing, 2000, pp. 1964-1967.
    [30]C. Yin, et al., "Location accuracy of multistatic radars (TR<sup>n</sup>) based on ranging information," in Proc. of the CIE International Conference on Radar, 1996, pp. 34-38.
    [31]R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Trans. Antennas and Propagation, vol. 34, pp. 276-280, 1986.
    [32]N. L. a. E. Mozeson, Radar Signals: John Wiley & Sons, 2004.
    [33]C. J. Baker, et al., "Passive coherent location radar systems. Part 2: waveform properties," IEE Proc. Radar, Sonar and Navigation, vol. 152, pp. 160-168, 2005.
    [34]M. Radmard, et al., "Advantages of the DVB-T signal for passive radar applications," in Proc. of the 11th International Radar Symposium (IRS), 2010, pp. 1-5.
    [35]F. Colone, et al., "A Multistage Processing Algorithm for Disturbance Removal and Target Detection in Passive Bistatic Radar," IEEE Trans. Aerospace and Electronic Systems, vol. 45, pp. 698-722, 2009.
    [36]E. T. S. I. (ETSI), "Digital Video Broadcasting (DVB); Frame structure, channel coding and modulation for digital terrestrial television," in European Standard (EN) 300 744 V1.5.1, ed, 2004.
    [37]M. Radmard, et al., "Cross ambiguity function analysis of the '8k-mode' DVB-T for passive radar application," in Proc. of the 11th International Radar Symposium (IRS), 2010, pp. 1-4.
    [38]Z. Gao, et al., "DVB-T Signal Cross-Ambiguity Functions Improvement for Passive Radar," in Proc. of the CIE International Conference on Radar, 2006, pp. 1-4.
    [39]D. Langellotti, et al., "Impact of synchronization on the ambiguity function shape for PBR based on DVB-T signals," in Proc. of the International Radar Symposium (IRS), 2010, pp. 1-4.
    [40]C. Bongioanni, et al., "A new approach for DVB-T Cross-Ambiguity Function evaluation," in Proc. of the Radar Conference on EuRAD 2009, 2009, pp. 37-40.
    [41]H. A. Harms, et al., "Understanding the signal structure in DVB-T signals for passive radar detection," in Proc. of the 2010 IEEE Conference on Radar 2010, pp. 532-537.
    [42]P. Falcone, et al., "Experimental results for OFDM WiFi-based passive bistatic radar," in Proc. of the 2010 IEEE Conference on Radar, 2010, pp. 516-521.
    [43]Lyrtech, "Twin Tunable RF Transceiver user guide," ed, 2009, p. 3.
    [44]M. A. Richards, Fundamentals of Radar Signal Processing: McGraw-Hill, 2006.
    [45]S. Haykin, Adaptive Filter Theory, fourth ed.: Prentice Hall, 2002.
    [46]DekTec, "DTA-115," in Multi-Standard Modulator with VHF/UHF Upconverter, ed: DekTec Digital Video B.V., 2007.
    [47]J. L. Yu and C. C. Yeh, "Generalized eigenspace-based beamformers," IEEE Trans. Signal Processing, vol. 43, pp. 2453-2461, 1995.
    [48]Y. Zhang and B. P. Ng, "MUSIC-Like DOA Estimation Without Estimating the Number of Sources," IEEE Trans. Signal Processing, vol. 58, pp. 1668-1676, 2010.
    [49]Y. Hou and Y. Shen, "An improved signal subspace decomposition method in low SNR case," in Proc. of the 2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics (ISSCAA), 2010, pp. 143-146.

    無法下載圖示 全文公開日期 2016/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE