簡易檢索 / 詳目顯示

研究生: 鍾登皓
Deng-Hao Zhong
論文名稱: 三種快速鎖定演算法適用寬頻操作且具有責任週期校正之全數位延遲鎖定迴路
A Wide-Range All-Digital Delay-Locked Loop Using Three kinds of Fast-Lock Binary Search Algorithms with Duty Cycle Correction
指導教授: 楊湰頡
Rong-jyi Yang
口試委員: 姚嘉瑜
Chia-Yu Yao
張湘輝
Hsiang-Hui Chang
韓松融
Sung-Rung Han
莊基男
Chi-Nan Chuang
陳超群
Chao-Chyun Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 76
中文關鍵詞: 延遲鎖定迴路二元搜索法遞迴二元搜索法延遲線動態頻率調整
外文關鍵詞: ADDLL, DLL, RSAR, FVSAR, DCDL, DVFS, Over clock, LDSAR
相關次數: 點閱:206下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著CMOS製程技術的進步,記憶體的複雜度及時脈訊號頻率均迅速增加,因此,系統內部同步時脈訊號之可靠度便愈來愈重要。如何消除時脈偏移的問題,將成為重要的議題。
    延遲鎖定迴路廣泛地運用在時脈同步的問題上,因為與傳統的鎖相迴路相比,它無條件穩定、且有較快的暫態反應,同時有較少的抖動累積現上。然而,它主要的缺點就是操作的頻率範圍較窄,同時沒有電源雜訊壓制的特性。因此全數位可調變長度二位元演算法的出現解決了上述的問題,但卻又使鎖定時間增加。所以本論文的主軸就是要克服上述所有問題點,打破傳統限制,並為延遲鎖定迴路提供一個具有彈性的應用層面。
    本輪文提出了全數位延遲鎖定迴路,利用三種改良式二位元演算法來加速鎖定時間的。首先提出快速鎖定可調變二位元演算法,主要針對可調變演算法在搜索時發生的重複性搜索做排除,藉此來縮短鎖定時間。其次提出了遞迴式二位元演算法,期望在位元長度上的搜索中,呈現非單調遞增使高低頻搜索時間一致,但遞迴式二位元演算法卻讓二元搜索上重複性更加嚴重,因此也利用了快速鎖定機制來使鎖定時間大幅縮短,最後則提出了具有位元使用長度偵測機制的二位元演算法,它彌補了快速鎖定可調變二位元演算法和遞迴式二位元演算法的缺點,並且巧妙的運用其優點,使相位偵測器能夠運用在大範圍的頻率搜索,如此不但更近一步加速鎖定時間,且使相位偵測器克服非50%責任週期來達成鎖定。


    With the progress of the CMOS technologies, the complexity and higher clock signal frequency of memory are increasing day after day. Therefore, the reliability of the clock signal in synchronous system becomes more and more important. How to reduce clock skew will be the most important topic of the clock synchronization circuit.
    Delay-locked loops (DLLs) are widely used to solve the issue of clock synchronization due to its un-conditionally stable, faster transient response and less jitter accumulation than the phase-locked loops (PLLs). However, the narrow operating frequency range and no supply noise suppression become the major drawbacks for the DLLs. Therefore the variable successive approximation register-controlled (VSAR) algorithm [6] was reported to solve the problems, but the lock time is too long. Thus the subject of this dissertation is to overcome the defects, to break the limitations and to make a flexible use for the conventional DLLs circuit.
    This paper presents an all-digital implemented delay-locked loop with a fast-lock characteristic using three modified binary search algorithms. First, the phenomenon of repetitive search in the VSAR algorithm is removed by the proposed fast VSAR (FVSAR) algorithm. Second, the recursive SAR (RSAR) algorithm applies the binary search algorithm to the delay length adjustment in the VASR algorithm. However, the phenomenon of repetitive search takes place in the RSAR algorithm as well. Therefore the fast recursive SAR (FRSAR) is proposed to speed up the locking process. Finally, the SAR Algorithm Delay-Lock Loop with Length Detection (LDSAR) resolve the FVSAR and the FRSAR algorithm shortcomings, LDSAR algorithm applies the Length Detection Circuit to speed up the locking time and the wide range phase detector to overcome the Non 50% duty cycle problems.

    目錄 目錄I 圖目錄II 表目錄V 第一章1 1.1動機及目的1 1.2論文概要4 第二章5 2.1 Analog Delay lock loop6 2.2 All Digital Delay lock loop13 2.3 All Digital Delay Lock Loop With VSAR Algorithm14 第三章19 3.1 All Digital Delay Lock Loop With FVSAR Algorithm19 3.2All Digital Delay Lock Loop With FRSAR Algorithm22 3.3 System Architecture26 A. Variable SAR Body29 B. Fast Lock VSAR31 C.Fast Lock Controller32 D. Fast Recursive SAR33 E. End Point detector35 F. Digital-Controlled Delay Line37 3.4Experimental Results40 3.5Conclusion49 第四章51 4.1 All Digital Delay Lock Loop With FVSAR Algorithm52 4.2Implementations58 A. Divider58 B. Phase Detector58 C. Adjustable SAR body59 D. Edge Combiner61 E.Mask Ctrl62 4.3Experimental Results63 第五章71 結論71 5.1Compare71 5.2Future work72 Bibliography75 圖目錄 圖2.1.1、基本型態延遲鎖定迴路 (a)Type I DLL (b)Type II DLL6 圖2.1.3、Type II延遲鎖定迴路S-domain模型7 圖2.1.4、輸出ΦDL對輸入ΦIN的轉移函數8 圖2.1.5、輸出ΦDL對輸入ΦREF的轉移函數8 圖2.1.9、Type I延遲鎖定迴路S-domain模型9 圖2.1.10、輸出ΦDL對輸入ΦREF的轉移函數10 圖2.1.11、DLL錯誤鎖定與正確鎖定狀況10 圖2.1.13、附加起使控制電路的相位頻率偵測器11 圖2.1.14、相位頻率偵測器最短延遲範圍條件12 圖2.1.16、附加起使控制電路的相位頻率偵測器時序圖12 圖2.2.1、暫存器控制數位式延遲鎖定迴路13 圖2.2.2、位移暫存器控制電路13 圖2.2.3、計數器控制數位延遲鎖定迴路14 圖2.3.1、(a)當輸入週期為6ns時的鎖定情況(b) 當輸入週期為1ns時的鎖定情況15 圖2.3.2、VSAR演算法16 圖2.3.3、VSAR時序圖16 圖2.3.4、頻率相對應鎖定週期17 圖3.1.1、FVSAR演算法19 圖3.1.2、FVSAR時序圖21 圖3.1.3、FVSAR延遲長度倍增狀態21 圖3.1.4、FVSAR鎖定範圍22 圖3.2.1、RSAR演算法位元長度變化情形22 圖3.2.2、RSAR演算法23 圖3.2.3、RSAR演算法諧波鎖定情形23 圖3.2.4、RSAR演算法重複性搜索狀況24 圖3.2.5、FRSAR演算法排除重複性搜索時序圖25 圖3.2.6、FRSAR演算法排除諧波鎖定時序圖25 圖3.3.1、FVSAR演算法及FRSAR演算法整合後的全數位延遲鎖定迴路26 圖3.3.2、FVSAR演算法各個訊號點時序圖27 圖3.3.3、位元長度不足時FRSAR演算法時序圖28 圖3.3.4、鎖定時FRSAR演算法時序圖29 圖3.3.5、可調變二位元演算法母體串接四個位元的傳統二位元演算法29 圖3.3.6、改良式二元搜索單元30 圖3.3.7、可調變快速鎖定二位元演算法核心電路整合32 圖3.3.8、一個位元的快速鎖定單元32 圖3.3.9、鎖定過程出現全一的錯誤鎖定33 圖3.3.10、遞迴式快速鎖定二位元演算法核心電路整合34 圖3.3.11、(a)十位元長度搜索下發生重複搜索 (b)七位元長度搜索下發生重複搜索34 圖3.3.12、(a)R7位元長度下形成鎖定的全部狀態 (b)R4位元長度正常結束搜索36 (c)R6位元長度正常結束搜索 (d)R7位元長度下提前在R6位元結束搜索36 (e)R7位元長度下提前進行R4位元長度搜索(f)R7位元長度下提前在R4位元結束搜索36 圖3.3.13、結尾點產生電路37 圖3.3.14、(a)晶格式延遲單元(b)巢狀式延遲線(c)微調延遲線38 圖3.3.15、數位碼對應延遲量39 圖3.3.16、數位碼延遲量對應差值39 圖3.3.17、延遲變異量39 圖3.4.1、全數位延遲鎖定迴路核心晶片圖40 圖3.4.2、量測時所利用的PCB板及個點訊號配置40 圖3.4.3、量測平台41 圖3.4.4、利用FVSAR演算法鎖定碼變化情況在(a)550MHz(b)300MHz(c)66MHz42 圖3.4.5、利用FRSAR演算法鎖定碼變化情況在(a)550MHz(b)300MHz(c)150MHz43 圖3.4.6、利用FRSAR演算法鎖定鎖定碼變化情況在66MHz44 圖3.4.7、各種演算法鎖定頻率對應鎖定週期44 圖3.4.8、量測鎖定波形圖在(a)550MHz(b)300MHz45 圖3.4.8、量測鎖定波形圖在(c)150MHz (d)66MHz46 圖3.4.9、量測鎖定時的抖動量在 (a)550MHz (b)300MHz47 圖3.4.9、量測鎖定時的抖動量在 (c)66MHz48 圖3.4.10、頻率變化對應功率和抖動量48 圖4.1.1、VSAR演算法在責任周期50%鎖定情況52 圖4.1.2、VSAR演算法在責任周期20%鎖定情況52 圖4.1.3、LDSAR相位偵測器時序圖53 圖4.1.4、延遲線產生glitch的地方53 圖4.1.5、DCDL glitch模擬圖53 圖4.1.6、LDSAR相位偵測器時序圖54 圖4.1.7、排除Glitch並使輸出回復50%責任週期之延遲線55 圖4.1.8、延遲線時序圖55 圖4.1.9、LDSAR演算法56 圖4.1.10、LDSAR演算法之系統架構56 圖4.1.11、LDSAR時序圖57 圖4.2.1、除三電路圖(a)提供SAR CLK(b)提供DCDL消除Glitch58 圖4.2.2、相位比較器電路圖59 圖4.2.3、相位比較器動作時序圖59 圖4.2.4、可調整長度的SAR母體60 圖4.2.5、Switch detector電路60 圖4.2.10、頻率合成器61 圖4.2.11、改良型頻率合成器61 圖4.2.12、DCDL glitch模擬圖62 圖4.2.13、Mask Ctrl電路62 圖4.3.1、全數位延遲鎖定迴路核心晶片圖63 圖4.3.2、量測時所利用的PCB板及個點訊號配置63 圖4.3.3、量測平台64 圖4.3.4、利用LDSAR演算法鎖定鎖定碼變化情況在(a)500MHz(b)250MHz(c)50MHz65 圖4.3.5、50MHz不同責任週期下鎖定波形圖(a)50%(b)5%(c)95%66 圖4.3.6、500MHz不同責任週期下鎖定波形圖(a)50%(b) (c)25% (d)80%67 圖4.3.7、量測鎖定時的抖動量在 (a)500MHz (b)50MHz68 圖4.3.8、頻率變化對應功率和抖動量69 圖4.3.9、LDSAR、FVSAR和FRSAR鎖定頻率對應鎖定週期69 圖5.1、各種演算法在不同的位元數下所使用的週期72 表目錄 表3.1、位元搜索長度對應鎖定狀態37 表5.1、演算法對應鎖定期望週期71 表5.2、Performance Summary73

    [1]A. Alvandpour, R. K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, “A 3.5 GHz 32mW 150 nm multiphase clock generator for high-performance microprocessors,” in IEEE Int. Solid-State Circ. Conf. Dig Tech. Papers, 2003, pp. 112–113, 489.
    [2]K. Nose, A. Shibayama, H. Kodama, M. Mizuno, M. Edahiro, and N. Nishi, “Deterministic inter-core synchronization with periodically all-in-phase clocking for low-power multi-core SoCs,” in IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, 2005, pp. 296–297, 599.
    [3]Feng Lin, Roman A. Royer, Brian Johnson, and Brent Keeth, “A Wide-Range Mixed-mode DLL for a Combination 512Mb 2.0 Gb/s/pin GDDR3 and 2.5 Gb/s/pin GDDR4 SDRAM,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 631-641, Mar. 2008.
    [4]D. Shin, J. Song, H. Chae, K. W. Kim, Y. J. Choi, C. Kim, “A 7ps-Jitter 0.053mm¬2 Fast-Lock ADDLL with Wide-Range and High-Resolution All-Digital DCC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2007, pp. 184-595.
    [5]A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Letters, vol. 32, no. 12, pp. 1055–1057, Jun. 1996.
    [6]G.-K. Dehng, J.-W. Lin, and S.-I. Liu, “A fast-lock mixed-mode DLL using a 2-b SAR algorithm,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1464–1471, Oct. 2001.
    [7]R.-J. Yang and S.-I. Liu, “A 40-550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 361–373, Feb. 2007.
    [8]A. Coban, M. H. Koroglu, and K. A. Ahmed, “A 2.5--3.125 Gb/s quad transceiver with second order analog DLL-based CDRs,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1940–1947, Sep. 2005.
    [9]B. Razavi, Design of Integrated Circuits for Optical Communications. : New York: McGraw Hill, 2002, p. 284.
    [10]C. N. Chuang and S. I. Liu, “A 0.5–5 GHz wide-range multi-phase DLL with a calibrated charge pump,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 939–943, Nov. 2007.
    [11]K. Nakamura, M. Fukaishi, Y. Hirota, Y. Nakazawa, and M. Yotsuyanagi, “A CMOS 50% duty cycle repeater using complementary phase blending,” VLSI Circuits, Dig. Tech. Papers, pp. 48–49, Jun. 2000.
    [12]H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A wide range delay-locked loop with a fixed latency of one clock cycle,” IEEE J. Solid-State Circuits, vol. 37, no. 11, pp. 1021–1027, Aug. 2002.
    [13]R. J. Yang and S. I. Liu, “A 2.5 GHz all-digital delay-locked loop in 0.13um CMOS technology,” IEEE J. Solid-State Circuits, vol. SC-42, pp. 2338–2347, Nov. 2007.
    [14]H. H. Chang, J. W. Lin, C. Y. Yang, and S. I. Liu, “A wide range delay-locked loop with a fixed latency of one clock cycle,” IEEE J.Solid-State Circuits, vol. 37, no. 11, pp. 1021–1027, Aug. 2002.
    [15]A. Alvandpour, R. K. Krishnamurthy, D. Eckerbert, S. Apperson, B. Bloechel, and S. Borkar, “A 3.5 GHz 32mW 150 nm multiphase clock generator for high-performance microprocessors,” in IEEE Int. Solid- State Circuits Conf. Dig. Tech. Papers, Feb. 2003, pp. 112–113.
    [16]Y. S. Kim, S. J. Park, Y.S. Kim, D. B. Jang, S. W. Jeong, H. J. Park, J. Y. Sim, “A 40-to-800Mhz locking multiphase DLL,” in IEEE Int. Solid-State Circ. Conf. Dig. Tech. Papers, Feb. 2007, pp. 306-307.
    [17]H. Chae, D. Shin, K. Kim, K. W. Kim, Y. J. Choi, C. Kim, “A Wide-Range All-Digital Multiphase DLL with Supply Noise Tolerance,” in Proc. IEEE Asian Solid-State Circ. Conf., Nov. 2008.
    [18]C. H. Kuo, M.F. Lin, and C.H. Chen, “A Multi-Band Delay-Locked Loop with Fast-Locked and Jitter-Bounded Features,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008.
    [19]Y. Okajima, M. Taguchi, M. Yanagawa, K.Nishimura, and O. Hamada, “Digital delay locked loop and design technique for high-speed synchronous interface,” IEICE Trans. Electron., vol.E79-C, pp. 798-807, June 1996.
    [20]J.-U. Wang. “The design and realization of clock synchronizer for high speed digital systems,” MS thesis, National Taiwan University, Department of Electrical engineering, June 1998.
    [21]A. Chandrakason, W. J. Bowhill, and F. Fox, Design of High-Performance Microprocessor Circuit, pp.240, IEEE Press, 2001.
    [22]H.-H. Chang and S.-I. Liu, “A wide-range and fast-locking all-digital cycle-controlled delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 661–670, Mar. 2005.
    [23]B. G. Kim and L. S. Kim, “A 250 MHz-2-GHz wide-range delay-locked loop,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1310–1321, Jun. 2005
    [24]Q. Du, J. Zhuang, and T. Kwasniewski, “A low-phase noise, antiharmonic programmable DLL frequency multiplier with period error compensation for spur reduction,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1205–1209, Nov. 2006.

    QR CODE