簡易檢索 / 詳目顯示

研究生: 王道一
Dao-Yi Wang
論文名稱: 雙層塗佈富鎳正極材料之電化學穩定性與安全性研究
Study on Electrochemical Stability and Safety of Double-Coated Ni-rich Cathode Materials
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 吳溪煌
She-Huang Wu
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 135
中文關鍵詞: 富鎳層狀材料正極材料表面改質機械式包覆人工固態電解質界面界面穩定性電池安全性
外文關鍵詞: Ni-rich layered material, cathode material, surface modification, mechanofusion, artificial SEI, interphase stability, battery safety
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

富鎳層狀材料因為擁有極高比電容量(~220 mAhg-1)的特性,近十年來受到廣泛的研究。但因其有許多的缺點,如熱穩定性差、易與電解液產生副反應、電容量衰退快等,使其始終無法商業化運用於實際生活中。
本研究主要進行雙層包覆,一為藉由乾式包覆工法-機械式包覆,將鈮酸鋰包覆於富鎳材料粉體表面,形成一穩定金屬氧化物層(人工固態電解質界面),將富鎳材料與電解液隔絕,藉以減少副反應的產生與過渡金屬離子的溶出,以提升粉體的界面穩定性及充放電穩定性。二為運用新型耐熱高分子聚合物,雙馬來醯亞胺與三聚硫氰酸包覆在富鎳材料粉體第二層,使電池在熱失控情況下可以聚合形成斷路,增加電池的安全性。本研究將比較單一製程包覆之樣品、雙層包覆之樣品與未改質前粉體之結構及電化學性能差異。
本研究先進行機械式包覆,將不同比例與不同時間的鈮酸鋰包覆在二次粒子表面,在增加最少阻抗的情況下,得到最佳的穩定性,並在雙重包覆的情況下進行高溫阻抗分析,觀察雙層包覆的電池是否會因為高分子聚合,使阻抗增加,達到增加安全性的作用。
本研究發現,經過鈮酸鋰與耐熱高分子雙層包覆的粉體,在高速率充放電(0.5 C)下有很好的穩定度,循環100圈後電容量為持率還能有49.4%,比改質前之樣品高出26個百分點,且在高溫下阻抗也因為聚合物的聚合而大量增加,使安全性得以提高。


Nickel rich cathode materials are highly researching for recent decade due to its high capacity ~220 mAhg-1. However, owing to the many drawbacks, like poor thermal stability, side reaction with electrolyte and capacity fading.
In this study, double-layered coating is mainly carried out. First part is to coat a metal oxide on the nickel-rich material powder with a dry coating method, Mechanofusion, to form an artificial solid electrolyte interface The nickel rich materials are isolated from the electrolyte to reduce the generation of side reactions and the dissolution of the transition metal ions to improve the stability of interphase and charge/discharge stability of the powder. Second layered, to use the heat-resistant polymer, bismaleimide and tripolythiocyanate, to coat on the nickel rich cathode material powder so that the battery can be polymerized to form an close circuit in the case of thermal runaway, increasing the safety of the battery. This study will compare the structure and electrochemical performance of a single process coated sample, a double coated sample and a non-modified powder.
In the results and discussion, the mechanofusion is first applied to coat the surface of the secondary particles with different ratio and different time of LiNbO3, and the best stability was obtained with the least impedance increase, and in the case of double-layeredcoating. Perform high-temperature impedance analysis to see if the double-coated battery will increase the impedance due to polymer polymerization, which will increase the safety.
The study found that the powder coated by LiNbO3 and double coated by heat resistant polymer has good stability at high C rate (0.5C) and the capacity can be maintained 49.4% after 100 cycles, it’s better than pristine sample. The impedence is also greatly increased at the high temperature due to the polymerization of the polymer so that the safety also improved.

摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XI 第1章 緒論 1 1.1. 前言 1 1.2. 鋰離子二次電池的發展 2 1.3. 鋰離子二次電池的組成及機制 4 1.3.1. 正極(陰極)材料 7 1.3.2. 負極(陽極)材料 12 1.3.3. 電解液 15 1.3.4. 隔離膜 19 1.4. 研究動機與目的 20 第2章 文獻回顧 22 2.1. 富鎳層狀正極材料(Ni-rich layered cathode material)簡介 22 2.2. 富鎳陰極材料之缺點 24 2.2.1. 陽離子錯位(cation mixing) 24 2.2.2. 表面汙染物(surface pollution) 27 2.3. 鋰離子電極材料之表面改質 29 2.3.1. 金屬氧化物表面塗佈 30 2.3.2. 提升導電性與導離性之表面改質 32 2.3.3. 核殼(core-shell)正極材料 36 2.3.4. 鋰反應塗層(Lithium Reactive Coating) 41 2.3.5. 機械式包覆(Mechanofusion)法 46 第3章 實驗方法與儀器設備 49 3.1. 儀器設備 49 3.2. 實驗藥品 51 3.3. 實驗步驟與方法 52 3.3.1. LiNbO3合成 52 3.3.2. LiNi0.8Co0.1Ni0.1O2合成 54 3.3.3. LiNbO3表面包覆LiNi0.8Co0.1Mn0.1O2正極材料 55 3.3.4. Living@表面雙層包覆LiNi0.8Co0.1Mn0.1O2陰極材料 57 3.4. 電化學效能測試與材料結構及特性分析 60 3.4.1. 電池電化學特性測試 60 3.4.2. XRD X-ray 繞射分析儀 64 3.4.3. 場發射掃描式電子顯微鏡(FE-SEM) 65 第4章 結果與討論 66 4.1. 機械式包覆LiNbO3前後之結構與表面分析 66 4.1.1. XRD 晶體結構特徵分析 67 4.1.2. SEM 表面型態分析 69 4.2. 機械式包覆LiNbO3前後與雙層包覆living@之電化學分析 72 4.2.1. 開環電位交流阻抗分析 73 4.2.2. 循環伏安法和首圈充放電曲線之量測 75 4.2.3. 長圈數穩定性測試與高電壓穩定性測試 80 4.2.4. 循環後之交流阻抗分析 88 4.2.5. 不同溫度之交流阻抗分析 91 4.2.6. XPS極片表面鑑定分析 94 第5章 結論 99 第6章 未來展望 102 參考文獻 103  

[1] 梁碧霞, "油電混合車的時代肯定會來! 成本降5成 還能維持毛利 這才是挑戰!," 2012.
[2] 電池中國網, "鋰電池的發展進程、發展前景與電池應用," 2017.
[3] 陳金銘, "電動車動力鋰電池材料技術趨勢," 2011.
[4] 林振華、林振富, "充電式鋰離子電池之材料應用."
[5] M.-H. Lin, "Investigation on structural deterioration mechanisms and performance enhancement of electrode materials for high energy lithium ion batteries " NTUST thesis, 2016.
[6] H.-Y. Hong, "A Dissolution/Precipitation Method Empolyed in the Preparation of Highly Conductive Sulfur/Polyacrylonitrile-Carbon Composites for Lithium-Sulfur Battery," NTUST thesis, 2016.
[7] A. M. Christian M. Julien , K. Z. , and a. H. Groult, "Comparative Issues of Cathode Materials for Li-Ion Batteries," inorganics, 2014.
[8] K.Mizushima, P.C.Jones, P.J.Wiseman, and J.B.Goodenough, "LixCoO2 (0 < x < 1) A New Cathode Material for Batteries of High Energy Density," Solid State Ionics, 1981.
[9] P. Periasamy, B. R. Babu, R. Thirunakaran, N. Kalaiselvi, T. P. Kumar, N. G. Renganathan, M. Raghavan, and N. Muniyandi, "solid-state synthesis and characterization of LiCoO2 and LiNiyCo1-yO2 solid solution," Bull. Mater. Sci. pp. 345–348., 2000.
[10] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, "Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries," Journal of The Electrochemical Society, 1997.
[11] A. K. Paclhi, K. Nanjunclaswamy, C. Masquelier, S.Okada, and J. B. Goodenough, "Effect of Structure on the Fe3/Fe2 Reclox Couple in Iron Phosphates," Journal of The Electrochemical Society, 1997.
[12] S. Wang, C. Zhou, Q. Zhou, G. Ni, and J. Wu, "Preparation of LiFePO4/C in a reductive atmosphere generated by windward aerobic decomposition of glucose," Journal of Power Sources, vol. 196, no. 11, pp. 5143-5146, 2011.
[13] "磷酸鐵鋰電池的七大優勢及五大缺點詳解," VehicleTrend車勢, 2017.
[14] S.-M. Oh, S.-W. Oh, C.-S. Yoon, B. Scrosati, K. Amine, and Y.-K. Sun, "High-Performance Carbon-LiMnPO4 Nanocomposite Cathode for Lithium Batteries," Advanced Functional Materials, vol. 20, no. 19, pp. 3260-3265, 2010.
[15] G. Li, H. Azuma, and M. Tohda, "LiMnPO4 as the Cathode for Lithium Batteries," Electrochemical and Solid-State Letters, vol. 5, no. 6, p. A135, 2002.
[16] H. H. Li, J. Jin, J. P. Wei, Z. Zhou, and J. Yan, "Fast synthesis of core-shell LiCoPO4/C nanocomposite via microwave heating and its electrochemical Li intercalation performances," Electrochemistry Communications, vol. 11, no. 1, pp. 95-98, 2009.
[17] K. Amine, H. Yasuda, and M. Yamachi, "Olivine LiCoPO4 as 4.8 V Electrode Material for Lithium Batteries," Electrochemical and Solid-State Letters, vol. 3, no. 4, p. 178, 1999.
[18] J. Wolfenstine and J. Allen, "Ni3+/Ni2+ redox potential in LiNiPO4," Journal of Power Sources, vol. 142, no. 1-2, pp. 389-390, 2005.
[19] M.M.Thackeray, W.I.F.David, P.G.Bruce, and J.B.Goodenough, "Lithium insertion into manganese spinels," Mat. Res. Bull., 1983.
[20] H. A. Jahn and E. Teller, "Stability of polyatomic molecules in degenerate electronic states - I—Orbital degeneracy," Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences, 1937.
[21] J. B. Goodenough and A. L. Loeb, "Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels," Physical Review, vol. 98, no. 2, pp. 391-408, 1955.
[22] D. Aurbach, M. D. Levia, K. Gamulski, B. Markovsky, G. Salitra, E. Levi, U. Heider, L. Heider, and R. Oesten, "Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques," Journal of Power Sources, 1999.
[23] Y. Xia, Y. Zhou, and M. Yoshio, "Capacily Fading on Cycling of 4 V Li LiMn2O4 Cells," Journal of The Electrochemical Society, 1997.
[24] J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, and Y. K. Sun, "Comparative Study of LiNi0.5Mn1.5O4-δand LiNi0.5Mn1.5O4Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332," Chemistry of Materials, vol. 16, no. 5, pp. 906-914, 2004.
[25] J. Molenda, J. Marzec, K. S. wierczek, W. Ojczyk, M. Ziemnicki, M. Molenda, M. Drozdek, and R. Dziembaj, "The effect of 3d substitutions in the manganese sublattice on the charge transport mechanism and electrochemical properties of manganese spinel," Solid State Ionics, vol. 171, no. 3-4, pp. 215-227, 2004.
[26] T. Ohzuku, S. Takeda, and M. Iwanaga, "Solid-state redox potentials for Li[Me1/2Mn3/2]O4 (Me 3d-transition metal) having spinel-framework structures a series of 5 volt materials for advanced lithium-ion batteries," Journal of Power Sources, 1999.
[27] J. B. Goodenough and K. S. Park, "The Li-ion rechargeable battery: a perspective," J Am Chem Soc, vol. 135, no. 4, pp. 1167-76, Jan 30 2013.
[28] E. M. Erickson, C. Ghanty, and D. Aurbach, "New Horizons for Conventional Lithium Ion Battery Technology," The Journal of Physical Chemistry Letters, vol. 5, no. 19, pp. 3313-24, Oct 2 2014.
[29] M. Zanini, S. Basu, and J. Fischer, "Alternate synthesis and reflectivity spectrum of stage 1 lithium - graphite intercalation compound," Carbon, 1978.
[30] S. Basu, "Rechargeable battery," Google Patents, 1981.
[31] F. Su, C. K. Poh, J. S. Chen, G. Xu, D. Wang, Q. Li, J. Lin, and X. W. Lou, "Nitrogen-containing microporous carbon nanospheres with improved capacitive properties," Energy Environ. Sci., vol. 4, no. 3, pp. 717-724, 2011.
[32] V. Petkov, A. Timmons, J. Camardese, and Y. Ren, "Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction," J Phys Condens Matter, vol. 23, no. 43, p. 435003, Nov 2 2011.
[33] H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, "On the challenge of developing advanced technologies for electrochemical energy storage and conversion," Materials Today, vol. 17, no. 3, pp. 110-121, 2014.
[34] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014.
[35] K. Xu, "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries," Chemical Reviews, vol. 104, no. 10, pp. 4303-4418, 2004.
[36] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, no. 3, pp. 587-603, 2010.
[37] J. Zheng, H. Zheng, R. Wang, L. Ben, W. Lu, L. Chen, L. Chen, and H. Li, "3D visualization of inhomogeneous multi-layered structure and Young's modulus of the solid electrolyte interphase (SEI) on silicon anodes for lithium ion batteries," Phys Chem Chem Phys, vol. 16, no. 26, pp. 13229-38, Jul 14 2014.
[38] 林幸慧, "車用鋰電池正極材料發展趨勢," 材料世界網, 2018.
[39] W. Liu, P. Oh, X. Liu, M. J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, "Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries," Angew Chem Int Ed Engl, vol. 54, no. 15, pp. 4440-57, Apr 7 2015.
[40] F. Schipper, E. M. Erickson, C. Erk, J.-Y. Shin, F. F. Chesneau, and D. Aurbach, "Review-Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes," Journal of The Electrochemical Society, 2017.
[41] W. J. Lin, M. Hirayama, K. Suzuki, and R. Kanno, "Fabrication and electrochemical properties of a LiCoO2 and Li10GeP2S12 composite electrode for use in all-solid-state batteries," Solid State Ionics, vol. 285, pp. 136-142, 2016.
[42] H.-J. Noh, S. Youn, C. S. Yoon, and Y.-K. Sun, "Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries," Journal of Power Sources, vol. 233, pp. 121-130, 2013.
[43] Y. Hinuma, Y. S. Meng, K. Kang, and G. Ceder, "Phase Transitions in the LiNi0.5Mn0.5O2 System with Temperature," Chemistry of Materials, vol. 19, no. 7, pp. 1790-1800, 2007.
[44] K. Kang and G. Ceder, "Factors that affect Li mobility in layered lithium transition metal oxides," Physical Review B, vol. 74, no. 9, 2006.
[45] J. R. Dahn, "Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure," Solid State Ionics, 1990.
[46] C. Cheng, L. Tan, H. Liu, and X. Huang, "High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation," Materials Research Bulletin, vol. 46, no. 11, pp. 2032-2035, 2011.
[47] T. Nohma, H. Kurokawa, M. Uehara, M. Takahashi, K. Nishio, and T. Saito, "Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries," Journal of Power Sources 1995.
[48] T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, "Comparative study of LiCoO2, LiNiCoO2 and LiNiO2 for 4 volt secondary lithium cells," Electrochimica Acta, 1993.
[49] D.-H. Cho, C.-H. Jo, W. Cho, Y.-J. Kim, H. Yashiro, Y.-K. Sun, and S.-T. Myung, "effect of residual Li Compounds on layer Ni-rich LiNi0.7Mn0.3O2," Journal of The Electrochemical Society, 2014.
[50] K. Edström, T. Gustafsson, and J. O. Thomas, "The cathode–electrolyte interface in the Li-ion battery," Electrochimica Acta, vol. 50, no. 2-3, pp. 397-403, 2004.
[51] J. Cho, T.-J. Kim, Y. J. Kim, and B. Park, "High-Performance ZrO2-Coated LiNiO2 Cathode Material," Electrochemical and Solid-State Letters, 2001.
[52] J. Xiang, C. Chang, L. Yuan, and J. Sun, "A simple and effective strategy to synthesize Al2O3-coated LiNi0.8Co0.2O2 cathode materials for lithium ion battery," Electrochemistry Communications, vol. 10, no. 9, pp. 1360-1363, 2008.
[53] S.-T. Myung, K. Izumi, S. Komaba, H. Yashiro, H. J. Bang, Y.-K. Sun, and N. Kumagai, "Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2as Positive Electrode Materials for Lithium-Ion Secondary Batteries," The Journal of Physical Chemistry C, vol. 111, no. 10, pp. 4061-4067, 2007.
[54] S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro, and N. Kumagai, "Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries," Chemistry of Materials, vol. 17, no. 14, pp. 3695-3704, 2005.
[55] H.-J. Kweon, S. J. Kim, and D. G. Park, "Modification of LixNi1-yCoyO2 by applying a surface coating of MgO," ournal of Power Sources, 2000.
[56] W.-S. Yoon, K.-W. Nam, D. Jang, K. Y. Chung, J. Hanson, J.-M. Chen, and X.-Q. Yang, "Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD," Journal of Power Sources, vol. 217, pp. 128-134, 2012.
[57] H.-J. Kweon and D. G. Park, "Surface Modification of LiSr0.002Ni0.9Co0.1O2 by Overcoating with a Magnesium Oxide," Electrochemical and Solid-State Letters, 2000.
[58] H. Omanda, T. Brousse, C. Marhic, and D. M. Schleich, "Improvement of the Thermal Stability of LiNi0.8Co0.2O2 Cathode by a SiOx Protective Coating," Journal ofThe Electrochemical Society, 2004.
[59] S. Sim, P. Oh, S. Park, and J. Cho, "Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries," Adv Mater, vol. 25, no. 32, pp. 4498-503, Aug 27 2013.
[60] Y. Cho, Y.-S. Lee, S.-A. Park, Y. Lee, and J. Cho, "LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors," Electrochimica Acta, vol. 56, no. 1, pp. 333-339, 2010.
[61] Q. Cao, H. P. Zhang, G. J. Wang, Q. Xia, Y. P. Wu, and H. Q. Wu, "A novel carbon-coated LiCoO2 as cathode material for lithium ion battery," Electrochemistry Communications, vol. 9, no. 5, pp. 1228-1232, 2007.
[62] N. H. Kwon, "The effect of carbon morphology on the LiCoO2 cathode of lithium ion batteries," Solid State Sciences, vol. 21, pp. 59-65, 2013.
[63] J. Kim, M. Noh, J. Cho, H. Kim, and K.-B. Kim, "Controlled Nanoparticle Metal Phosphates (Metal = Al , Fe, Ce, and Sr) Coatings on LiCoO2 Cathode Materials," Journal ofThe Electrochemical Society, 2005.
[64] K.-H. Choi, J.-H. Jeon, H.-K. Park, and S.-M. Lee, "Electrochemical performance and thermal stability of LiCoO2 cathodes surface-modified with a sputtered thin film of lithium phosphorus oxynitride," Journal of Power Sources, vol. 195, no. 24, pp. 8317-8321, 2010.
[65] Y. Sun, J. Han, S. Myung, S. Lee, and K. Amine, "Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode," Electrochemistry Communications, vol. 8, no. 5, pp. 821-826, 2006.
[66] H. J. Lee and Y. J. Park, "Interface characterization of MgF2-coated LiCoO2 thin films," Solid State Ionics, vol. 230, pp. 86-91, 2013.
[67] Z. Yang, Q. Qiao, and W. Yang, "Improvement of structural and electrochemical properties of commercial LiCoO2 by coating with LaF3," Electrochimica Acta, vol. 56, no. 13, pp. 4791-4796, 2011.
[68] X. Dai, A. Zhou, J. Xu, Y. Lu, L. Wang, C. Fan, and J. Li, "Extending the High-Voltage Capacity of LiCoO2 Cathode by Direct Coating of the Composite Electrode with Li2CO3 via Magnetron Sputtering," The Journal of Physical Chemistry C, vol. 120, no. 1, pp. 422-430, 2015.
[69] S. M. Lee, S. H. Oh, J. P. Ahn, W. I. Cho, and H. Jang, "Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials," Journal of Power Sources, vol. 159, no. 2, pp. 1334-1339, 2006.
[70] S. Yoon, K.-N. Jung, S.-H. Yeon, C. S. Jin, and K.-H. Shin, "Electrochemical properties of LiNi0.8Co0.15Al0.05O2–graphene composite as cathode materials for lithium-ion batteries," Journal of Electroanalytical Chemistry, vol. 683, pp. 88-93, 2012.
[71] J. Ying, C. Wan, and C. Jiang, "Surface treatment of LiNi0.8Co0.2O2 cathode material for lithium secondary batteries," Journal of Power Sources, 2001.
[72] Y. K. Sun, S. T. Myung, H. S. Shin, Y. C. Bae, and C. S. Yoon, "Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries," J Phys Chem B, vol. 110, no. 13, pp. 6810-5, Apr 6 2006.
[73] Y. K. Sun, S. T. Myung, M. H. Kim, J. Prakash, and K. Amine, "Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries," J Am Chem Soc, vol. 127, no. 38, pp. 13411-8, Sep 28 2005.
[74] Y. Cho, S. Lee, Y. Lee, T. Hong, and J. Cho, "Spinel-Layered Core-Shell Cathode Materials for Li-Ion Batteries," Advanced Energy Materials, vol. 1, no. 5, pp. 821-828, 2011.
[75] Y. Cho, P. Oh, and J. Cho, "A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer," Nano Lett, vol. 13, no. 3, pp. 1145-52, Mar 13 2013.
[76] A. T. Appapillai, A. N. Mansour, J. Cho, and Y. Shao-Horn, "Microstructure of LiCoO2with and without “AlPO4” Nanoparticle Coating: Combined STEM and XPS Studies," Chemistry of Materials, vol. 19, no. 23, pp. 5748-5757, 2007.
[77] J.-G. Lee, B. Kim, J. Cho, Y.-W. Kim, and B. Parka, "Effect of AlPO4-Nanoparticle Coating Concentration on High-Cutoff-Voltage Electrochemical Performances in LiCoO2," Journal ofThe Electrochemical Society, 2004.
[78] M. H. Park, M. Noh, S. Lee, M. Ko, S. Chae, S. Sim, S. Choi, H. Kim, H. Nam, S. Park, and J. Cho, "Flexible high-energy Li-ion batteries with fast-charging capability," Nano Lett, vol. 14, no. 7, pp. 4083-9, Jul 9 2014.
[79] L. Zheng, T. D. Hatchard, and M. N. Obrovac, "A high-quality mechanofusion coating for enhancing lithium-ion battery cathode material performance," MRS Communications, vol. 9, no. 01, pp. 245-250, 2018.
[80] H. Hsin-Fu, "In-situ Raman Investigation on Lithium-rich Layered Cathode Materials and STOBA Additives upon Cycling," NTUST thesis, 2015.
[81] "Charging Lithium-ion," Battery University, 2018.
[82] T. Warwick, "Battery Testing with EIS (Electrochemical Impedance Spectroscopy)," Blue scientific, 2015.
[83] L.-j. Li, X.-h. Li, Z.-x. Wang, H.-j. Guo, P. Yue, W. Chen, and L. Wu, "A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery," Powder Technology, vol. 206, no. 3, pp. 353-357, 2011.
[84] A. Kajiyama, K. Takada, T. Inada, M. Kouguchi, S. Kondo, and M. Watanabe, "Layered Li-Co-Mn Oxide as a High-Voltage Positive Electrode Material for Lithium Batteries," Journal ofThe Electrochemical Society, 2001.
[85] Q. Liu, K. Du, G.-r. Hu, Z.-d. Peng, Y.-b. Cao, and W.-m. Liu, "Characterization of LiNi0.9Co0.05[Mn1/2Mg1/2]0.05O2 solid solution for secondary lithium ion batteries," Solid State Ionics, vol. 227, pp. 23-29, 2012.
[86] S.-M. Bak, K.-W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K.-B. Kim, K. Y. Chung, and X.-Q. Yang, "Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials," Chemistry of Materials, vol. 25, no. 3, pp. 337-351, 2013.
[87] S. Verdier, L. E. Ouatani, R. Dedryvère, F. Bonhomme, P. Biensan, and D. Gonbeau, "XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries," Journal of The Electrochemical Society, 2007.
[88] P. Verma, P. Maire, and P. Novák, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, no. 22, pp. 6332-6341, 2010.
[89] S. Fang, D. Jackson, M. L. Dreibelbis, T. F. Kuech, and R. J. Hamers, "Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer," Journal of Power Sources, vol. 373, pp. 184-192, 2018.

無法下載圖示 全文公開日期 2024/08/28 (校內網路)
全文公開日期 2024/08/28 (校外網路)
全文公開日期 2024/08/28 (國家圖書館:臺灣博碩士論文系統)
QR CODE