簡易檢索 / 詳目顯示

研究生: 王柏崴
Po-Wei Wang
論文名稱: 適用於LTE/LTE-A下行鏈結以提升公平性暨保障服務品質之封包排程演算法
Downlink Packet Scheduling Algorithms Considering Fairness and QoS Guarantee for LTE/LTE-A
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 黎碧煌
Bih-Hwang Lee
鄭欣明
Shin-Ming Cheng
吳中實
Jhong-shin Wu
張宏慶
Hung-Chin Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 55
中文關鍵詞: 長程演進技術排程演算法公平性
外文關鍵詞: LTE, LTE-A, scheduling, algorithm, fairness
相關次數: 點閱:214下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行動網路技術日新月異,如何有效的將有限的資源做最好的分配是一大難題,本論文針對LTE/LTE-A下行網路設計出兩個完善的排程機制,可以在保障即時性資料流服務品質的前提下提升整體公平性。

    排程即是在數個等待被服務的資料流中挑選出當下最需要被服務的資料流,目前主流的排程機制如M-LWDF、M-EDF-PF、Log Rule、EXP/PF及FLS雖然能夠保證即時性資料流的服務品質,但卻沒有對非即時性資料流設計任何補償機制,即時性資料流常有被優先服務的權力,可能發生非即時性資料流餓死的現象,嚴重導致非即時性資料流公平性下降,因而使整體公平性降低。本論文旨在設計能夠保有即時性資料流的服務品質,且還能維持非即時性資料流公平性的排程機制,利用隨者時間累加的特性,使原本低優先權的資料流慢慢累加成高優先權並取得服務機會,可以有效減少餓死現象,並提升非即時性資料流公平性,藉以提高整體公平性。本論文使用五項指標來評斷排程機制的優劣,分別為產能、公平性、延遲、延遲抖動及封包遺失率。透過模擬結果顯示,本論文所提之方法公平性確實比主流排程機制來得好且其他各項指標皆能夠符合各種資料流的服務品質需求。


    As the technology of mobile communication networks evolves, how to allocate limited resources efficiently is still a hot issue to be solved. Aiming at this issue, two scheduling algorithms will be proposed for the downlink of LTE/LTE-A in this thesis to greatly enhance the fairness while guaranteeing the quality of service (QoS) of different service flows.

    As one knows, scheduling addresses the selection of service flows according to QoS, channel quality, and etc. In the literature, the existing scheduling algorithms for LTE/LTE-A, e.g., M-LWDF, M-EDF-PF, Log Rule, EXP/PF, and FLS, could meet the QoS requirements for real-time (RT) service flows, but almost no compensation is provided for the non-real-time (NRT) service flows in these algorithms. Therefore, RT service flows always get higher priorities than NRT service flows, leading to the starvation and lower fairness for NRT service flows. To address such an issue, this thesis targets to design two scheduling algorithms to not only guarantee QoS of RT service flows but also enhance fairness of NRT service flows. Examining performance metrics, including throughput, fairness index, delay, delay jitter, and packet loss ratio, the proposed scheduling algorithms are evaluated accordingly with comprehensive comparison to some closely related algorithms in the literature. As revealed by our simulation results, the proposed algorithms successfully achieve better fairness while guaranteeing QoS of different service flows as compared to the closely related algorithms and are highly recommended for LTE/LTE-A.

    中文摘要 iii 英文摘要 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章、緒論 1 1.1 LTE/LTE-A 基本架構 1 1.1.1 LTE/LTE-A 簡介 1 1.1.2 LTE/LTE-A 系統架構 2 1.1.3 OFDM 與OFDMA 3 1.2 LTE/LTE-A 排程架構 3 1.2.1 排程介紹 3 1.2.2 LTE/LTE-A 分層架構 4 1.2.3 通道品質指標CQI 6 1.2.4 LTE/LTE-A 服務品質 7 1.2.5 資源區塊RB 及LTE/LTE-A 訊框結構 8 1.2.6 排程演算法 10 1.2.7 排程程序 11 1.3 研究動機 12 第二章、相關文獻回顧 14 2.1 PF 排程演算法 15 2.2 M-LWDF 排程演算法 15 2.3 M-EDF-PF 排程演算法 16 2.4 Log Rule 排程演算法 16 2.5 EXP/PF 排程演算法 17 2.6 FLS 排程機制 17 第三章、提升公平性暨保障服務品質之排程演算法 19 3.1 以許可量為基礎之公平排程 19 3.2 以佇列長度為基礎之公平排程 21 第四章、模擬結果與討論 24 4.1 模擬環境與參數設定 24 4.2 公平性之計算 25 4.3 結果與討論 26 4.3.1 吞吐量 27 4.3.2 封包延遲 31 4.3.3 平均延遲抖動 35 4.3.4 封包遺失率 38 4.3.5 公平性 42 第五章、總結 50 參考文獻 51 誌謝 55

    [1] 3GPP, Tech. Specif. Group Radio Access Network - Requirements for
    Evolved UTRA (E-UTRA) and Evolved UTRAN (E-UTRAN), 3GPP TS
    25.913.
    [2] N. Abu-Ali, A. E. M. Taha, M. Salah, and H. Hassanein, “Uplink scheduling in
    LTE and LTE-Advanced: Tutorial, survey and evaluation framework,” IEEE
    Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1239–1265, Dec.
    2014.
    [3] L. Á. M. R. De Temiňo, G. Berardinelli, S. Frattasi, and P. Mogensen,
    “Channel-aware scheduling algorithms for SC-FDMA in LTE uplink,” in Proc.
    IEEE 19th International Symposium on Personal Indoor and Mobile Radio
    Communications (PIMRC), pp. 1–6, Sept. 2008.
    [4] A. Damnjanovic, J. Montojo, Y. Wei, T. Ji, T. Luo, M. Vajapeyam, T. Yoo,
    O. Song, and D. Malladi, “A survey on 3GPP heterogeneous networks,” IEEE
    Wireless Communications, vol. 18, no. 3, pp. 10–21, June 2011.
    [5] R. Love, R. Kuchibhotla, A. Ghosh, R. Ratasuk, B. Classon, and Y. Blankenship,
    “Downlink control channel design for 3GPP LTE,” in Proc. IEEE Wireless
    Communications and Networking Conference (WCNC), pp. 813–818,
    March 2008.
    [6] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
    packet scheduling in LTE cellular networks: Key design issues and a survey,”
    IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, June
    2013.
    [7] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial
    Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access
    Network (E-UTRAN); Packet Data Convergence Protocol (PDCP) specification
    (Release 9), 3GPP TS 36.323.
    [8] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial
    Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access
    Network (E-UTRAN); Radio Link Control (RLC) protocol specification
    (Release 9), 3GPP TS 36.322.
    [9] 3GPP, Tech. Specif. Group Radio Access Network - Evolved Universal Terrestrial
    Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access
    Network (E-UTRAN); Medium Access Control (MAC) protocol specification
    (Release 9), 3GPP TS 36.321.
    [10] S. N. Donthi and N. B. Mehta, “Joint performance analysis of channel quality
    indicator feedback schemes and frequency-domain scheduling for LTE,”
    IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3096–3109,
    June 2011.
    [11] N. Kolehmainen, J. Puttonen, P. Kela, T. Ristaniemi, T. Henttonen, and
    M. Moisio, “Channel quality indication reporting schemes for UTRAN long
    term evolution downlink,” in Proc. IEEE on Vehicular Technology Conference
    (VTC), pp. 2522–2526, May 2008.
    [12] 3GPP, Tech. Specif. Group Services and System Aspects - Policy and charging
    control architecture (Release 9), 3GPP TS 23.203.
    [13] P. Kela, J. Puttonen, N. Kolehmainen, T. Ristaniemi, T. Henttonen, and
    M. Moisio, “Dynamic packet scheduling performance in UTRA long term evolution
    downlink,” in Proc. IEEE 3rd International Symposium on Wireless Pervasive
    Computing (ISWPC), pp. 308–313, May 2008.
    [14] D. Liu and Y. H. Lee, “An efficient scheduling discipline for packet switching
    networks using earliest deadline first round robin,” Telecommunication
    Systems, vol. 28, no. 3-4, pp. 453–474, Oct. 2005.
    [15] S. J. Wu and L. Chu, “A novel packet scheduling scheme for downlink LTE
    system,” in Proc. 2011 IEEE Seventh International Conference on Intelligent
    Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 25–28,
    Oct. 2011.
    [16] Q. Liu and C. Chen, “Smart downlink scheduling for multimedia streaming
    over LTE networks with hard hand-off,” IEEE Transactions on Circuits and
    Systems for Video Technology, Feb. 2015.
    [17] S. J. Bae, B. G. Choi, and M. Y. Chung, “Delay-aware packet scheduling
    algorithm for multiple traffic classes in 3GPP LTE system,” in Proc. 17th IEEE
    Asia-Pacific Conference on Communications (APCC), pp. 33–37, Oct. 2011.
    [18] L. S. Ali Alfayly, Is-Haka Mkwawa and E. Ifeachor, “QoE-driven LTE downlink
    scheduling for VoIP application,” in Proc. 2015 12th Annual IEEE Consumer
    Communications and Networking Conference (CCNC), pp. 603–604, Jan.
    2015.
    [19] J. M. Holtzman, “Asymptotic analysis of proportional fair algorithm,” in Proc.
    12th IEEE International Symposium on Personal Indoor and Mobile Radio
    Communications (PIMRC), vol. 2, pp. F–33, Oct. 2001.
    [20] M. Proebster, C. M. Mueller, and H. Bakker, “Adaptive fairness control for a
    proportional fair LTE scheduler,” in Proc. 2010 IEEE 21st International Symposium
    on Personal Indoor and Mobile Radio Communications (PIMRC),
    pp. 1504–1509, Sept. 2010.
    [21] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, and R. Vijayakumar,
    “Providing quality of service over a shared wireless link,” IEEE
    Communications Mag., vol. 39, no. 2, pp. 150–154, Feb. 2001.
    [22] A. L. Stolyar and K. Ramanan, “Largest weighted delay first scheduling:
    Large deviations and optimality,” Annals of Applied Probability, pp. 1–48,
    Feb. 2001.
    [23] B. Liu, H. Tian, and L. Xu, “An efficient downlink packet scheduling algorithm
    for real time traffics in LTE systems,” in Proc. 2013 IEEE Consumer communications
    and networking conference (CCNC), pp. 364–369, Jan. 2013.
    [24] B. Sadiq, R. Madan, and A. Sampath, “Downlink scheduling for multiclass
    traffic in LTE,” EURASIP Journal on Wireless Communications and Networking,
    vol. 2009, p. 14, March 2009.
    [25] J. H. Rhee, J. M. Holtzman, and D. K. Kim, “Scheduling of real/non-real time
    services: adaptive EXP/PF algorithm,” in Proc. IEEE Semiannual on Vehicular
    Technology Conference (VTC), vol. 1, pp. 462–466, Apr. 2003.
    [26] F. Afroz, K. Sandrasegaran, and P. Ghosal, “Performance analysis of PF,
    M-LWDF and EXP/PF packet scheduling algorithms in 3GPP LTE downlink,”
    in Proc. 2014 IEEE Australasian Telecommunication Networks and Applications
    Conference (ATNAC), pp. 87–92, Nov. 2014.
    [27] G. Piro, L. A. Grieco, G. Boggia, R. Fortuna, and P. Camarda, “Two-level
    downlink scheduling for real-time multimedia services in LTE networks,” IEEE
    Transactions on Multimedia, vol. 13, no. 5, pp. 1052–1065, May 2011.
    [28] H. W. Ferng and H. Y. Liau, “Design of fair scheduling schemes for the QoSoriented
    wireless lan,” IEEE Transactions on Mobile Computing, vol. 8, no. 7,
    pp. 880–894, Nov. 2009.
    [29] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating
    LTE cellular systems: an open-source framework,” IEEE Transactions on
    Vehicular Technology, vol. 60, no. 2, pp. 498–513, Nov. 2011.
    [30] K. Gomez, L. Goratti, F. Granelli, and T. Rasheed, “A comparative study
    of scheduling disciplines in 5G systems for emergency communications,” in
    Proc. 2014 IEEE International Conference on 5G for Ubiquitous Connectivity
    (5GU), pp. 40–45, Nov. 2014.

    QR CODE