簡易檢索 / 詳目顯示

研究生: 劉律君
Lu-chun Liu
論文名稱: 包覆厚朴酚之聚縮酮微米顆粒的製備與其在生醫之應用
Preparation of magnolol loaded polyketal microparticles and their biomedical applications
指導教授: 高震宇
Cheb-yu Kao
口試委員: 周志中
Tz-chong Chou
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 88
中文關鍵詞: 聚縮酮厚朴酚急性肺損傷
外文關鍵詞: polyketal, magnolol, acute lung injury
相關次數: 點閱:271下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

急性肺損傷是死亡率高的肺部疾病,臨床上仍無有效之治療方法,因此急需發展一套有效的治療策略。臨床病理上,急性肺損傷患者會出現肺泡及間質水腫、肺泡塌陷、細胞浸潤等情形,其病理機轉與肺部巨噬細胞(alveolar macrophage)之活化、細胞激素(cytokines)的釋放有極密切的關係。因此在臨床上常以抗發炎藥物治療急性肺損傷。厚朴酚(magnolol)已證實可以抑制巨噬細胞受刺激所產生之細胞激素及相關之發炎前驅物質,然而magnolol極為疏水,在水溶液環境中懸浮分散不佳,影響其在活體內之藥物分佈,因此臨應用上極為受限。因此如能開發出一個藥物載體可以有效解決magnolol疏水的特性,並提升藥物傳遞至巨噬細胞之效率,將有助於急性肺損傷的治療。聚縮酮(polyketal)為具酸鹼應答型之生物可降解高分子,降解後產生中性且可被人體吸收之副產物,因此生物相容性極高。以polyketal製備適合肺部傳輸之微米顆粒除了可以改善magnolol之懸浮特性外,更重要的是polyketal酸鹼應答及快速水解特性,使其可以在生理環境下維持藥物之穩定,一旦到達肺部巨噬細胞時,在吞噬溶酶體之酸性環境下可迅速將magnolol釋出,抑制肺部發炎因子,進而達到治療急性肺損傷之目的。
  在本研究中利用微調式合成法製備具快速水解能力之polyketal共聚物,並利用此高分子製備出適合肺部傳輸之magnolol微米顆粒,並利用電子顯微鏡與高效能液相層析儀分析所製備之顆粒,結果顯示polyketal微粒大小為3.5± 0.417 μm,而magnolol包覆率約85± 8.44 %,在酸性的環境下(pH5.0),magnolol可以在六小時內完全釋放。此外細胞實驗結果顯示,polyketal微米顆粒除了可以有效降低magnolol毒性外,在抑制NO的生成上,magnolol-polyketal微粒比free magnolol更能有效抑制NO的產生,達到抗發炎的效果。


Acute lung injury (ALI) is one of the leading causes of death in sepsis. Pro-inflammatory cytokines secreted by macrophages and consequently produced nitric oxide (NO) that play a major role in mediating acute lung injury. Magnolol has shown inhibitory effects on NO production in lipopolysaccharides (LPS)-activated macrophages, however, the poor solubility and the poor suspension properties of magnolol have hindered the success. Drug delivery systems that can target magnolol to macrophages have great clinical potential. Polyketals, a family of pH sensitive biodegradable polymers, have been used as drug delivery vehicles for the treatment of inflammatory diseases because they have excellent biocompatibility and do not generate inflammatory acid degradation products.Polyketal microparticles can be manipulated to the optimal sizes (1-5 μm) for pulmonary drug delivery by changing the preparation conditions. Microparticles formulated from polyketal copolymers should be suitable for treating acute lung injury because they rapidly hydrolyze and release magnolol in the phagolysosome of macrophages (pH 5.0), but remain stables at physiological conditions (pH 7.4). In this research, we successfully synthesized a polyketal copolymer with rapid hydrolysis rate, and used it to encapsulate magnolol. The results showed the particle size of magnolol-PKMs is 3.5 ± 0.417 μm and encapsulation efficiency of magnolol-PKMs is 85 ± 8.44 %. Also magnolol-PKMs exhibited a great aqueous dispensability and low cytotoxicity. The magnolol-PKMs also showed better inhibitory effects on NO production from LPS -activated RAW 264.7 cell when compared to free magnolol at same condition.

摘要 I ABSTRACT III 圖索引 V 表索引 VII 縮寫表 VIII 第一章 緒論 1 第二章 文獻回顧 3 2.1 急性肺損傷 3 2.1.1 急性肺損傷的病因 3 2.1.2 肺損傷的病理機制 4 2.1.3 急性肺損傷治療方式 4 2.2 Magnolol (厚朴酚) 6 2.3 藥物傳輸系統 8 2.3.1 高分子材料輸藥系統 8 2.3.2 藥物釋放系統控制釋放機制 9 2.3.3 影響藥物釋放速率因素 9 2.3.4 微米顆粒肺部傳遞系統 10 2.3.5 巨噬細胞與微米顆粒間之作用 11 2.4 Polyketal 13 第三章 研究設計與方法 15 3.1 研究設計 15 3.1.1 實驗設計 15 3.1.2 實驗架構 17 3.2 實驗藥品、試劑與儀器設備 18 3.2.1 合成製備之實驗藥品試劑 18 3.2.2 細胞培養用之藥品試劑 20 3.2.3 動物實驗用之藥品試劑 20 3.2.4 實驗分析儀器設備 21 3.3 Polyketal共聚物合成 23 3.4 Polyketal共聚物特徵分析 23 3.4.1 Polyketal共聚物組成分析 23 3.4.2 Polyketal共聚物分子量分析 24 3.4.3 Polyketal共聚物熱性質分析 24 3.4.4 Polyketal共聚物產率評估 24 3.5 Magnolol純度分析 25 3.6 Polyketal微米顆粒載體(Polyketal Microparticles,blank-PKMs)製備 26 3.6.1 Polyketal共聚物微米顆粒製備 26 3.6.2 Polyketal共聚物包埋magnolol微米顆粒(Magnolol-PKMs)製備 26 3.6.3 Polyketal共聚物包埋DiI螢光染劑微米顆粒(DiI-PKMs)製備 27 3.7 微米顆粒載體特徵分析 28 3.7.1 粒徑分析 28 3.7.2 形態觀察 28 3.7.3 微米顆粒包覆率分析 29 3.7.4 Magnolol-PKMs體外釋放研究 30 3.8 In vitro Raw264.7細胞平台 32 3.8.1 細胞培養 32 3.8.2 細胞毒性MTT分析 34 3.8.3 Magnolol-PKMs抑制細胞一氧化氮產物生成分析 36 3.8.4 細胞吞噬DiI-PKMs變化 37 3.9 In vivo評估polyketal微米顆粒(blank-PKMs)對內毒素誘導急性肺損傷動物模式之毒性 38 3.9.1 內毒素誘導急性肺損傷動物模式白血球計數測定 38 3.9.2 內毒素誘導急性肺損傷動物模式肺濕/乾重量比測定 39 3.9.3 內毒素誘導急性肺損傷動物模式蛋白質濃度分析測定 39 3.10 統計學分析 (Statistical Analysis) 40 第四章 結果 41 4.1 Polyketal共聚物合成與物性評估 41 4.1.1 Polyketal共聚物組成分析 41 4.1.2 Polyketal共聚物分子量分析 43 4.1.3 Polyketal共聚物熱性質分析 44 4.1.4 Polyketal共聚物產率評估 45 4.2 Magnolol 純度分析 45 4.3 微米顆粒性質分析 47 4.3.1 微米顆粒粒徑分析(DLS) 47 4.3.2 微米顆粒形態分析(SEM) 49 4.3.3 Magnolol微米顆粒包覆率評估 51 4.3.4 Magnolol-PKMs體外釋放效率評估 52 4.4.5 微米顆粒懸浮評估 53 4.4 細胞實驗 54 4.4.1 細胞毒性分析 54 4.4.2 細胞形態 60 4.4.3 Magnolol-PKMs抑制細胞一氧化氮產物生成分析 61 4.4.4 細胞吞噬DiI-PKMs變化 65 4.5 動物實驗測試初步結果 69 第五章 討論 71 5.1 Polyketal共聚物合成評估 71 5.2 Magnolol-PKMs 性質評估 72 5.3 In vitro 細胞實驗 73 5.4 動物實驗結果評估 75 第六章 總結 77 第七章 結論 81 參考文獻 80 附錄 84

[1] Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K. Acute lung injury review. Intern Med. 2009;48:621-30.
[2] Choi RJ, Shin EM, Jung HA, Choi JS, Kim YS. Inhibitory effects of kaurenoic acid from Aralia continentalis on LPS-induced inflammatory response in RAW264.7 macrophages. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2011;18:677-82.
[3] Nieuwenhuizen L, de Groot PG, Grutters JC, Biesma DH. A review of pulmonary coagulopathy in acute lung injury, acute respiratory distress syndrome and pneumonia. European journal of haematology. 2009;82:413-25.
[4] Lai C-S, Lai Y-S, Kuo D-H, Wu C-H, Ho C-T, Pan M-H. Magnolol potently suppressed lipopolysaccharide-induced iNOS and COX-2 expression via downregulating MAPK and NF-κB signaling pathways. Journal of Functional Foods. 2011;3:198-206.
[5] Wu YT, Lin LC, Tsai TH. Simultaneous determination of honokiol and magnolol in Magnolia officinalis by liquid chromatography with tandem mass spectrometric detection. Biomed Chromatogr. 2006;20:1076-81.
[6] Fiore VF, Lofton MC, Roser-Page S, Yang SC, Roman J, Murthy N, et al. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials. 2010;31:810-7.
[7] Sy JC, Seshadri G, Yang SC, Brown M, Oh T, Dikalov S, et al. Sustained release of a p38 inhibitor from non-inflammatory microspheres inhibits cardiac dysfunction. Nat Mater. 2008;7:863-9.
[8] Michael A Matthay GAZ. Acute Lung Injury and the Acute Respiratory
Distress Syndrome. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY. 2005;VOL 33.
[9] Proudfoot AG, McAuley DF, Griffiths MJ, Hind M. Human models of acute lung injury. Dis Model Mech. 2011;4:145-53.
[10] Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet. 2007;369:1553-64.
[11] Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med. 2000;342:1334-49.
[12] Sou T, Meeusen EN, de Veer M, Morton DA, Kaminskas LM, McIntosh MP. New developments in dry powder pulmonary vaccine delivery. Trends Biotechnol. 2011.
[13] Anzueto A, Baughman RP, Guntupalli KK, Weg JG, Wiedemann HP, Raventos AA, et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N Engl J Med. 1996;334:1417-21.
[14] Allison AC, Cacabelos R, Lombardi VRM, Álvarez XA, Vigo C. Celastrol, a potent antioxidant and anti-inflammatory drug, as a possible treatment for Alzheimer's disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2001;25:1341-57.
[15] Cepkova M, Matthay MA. Pharmacotherapy of acute lung injury and the acute respiratory distress syndrome. J Intensive Care Med. 2006;21:119-43.
[16] McIntyre RC, Jr., Pulido EJ, Bensard DD, Shames BD, Abraham E. Thirty years of clinical trials in acute respiratory distress syndrome. Crit Care Med. 2000;28:3314-31.
[17] Choi JH, Ha J, Park JH, Lee JY, Lee YS, Park HJ, et al. Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols. Japanese journal of cancer research : Gann. 2002;93:1327-33.
[18] Kang JS, Lee KH, Han MH, Lee H, Ahn JM, Han SB, et al. Antiinflammatory activity of methanol extract isolated from stem bark of Magnolia kobus. Phytotherapy research : PTR. 2008;22:883-8.
[19] Kong CW, Tsai K, Chin JH, Chan WL, Hong CY. Magnolol attenuates peroxidative damage and improves survival of rats with sepsis. Shock. 2000;13:24-8.
[20] Lee YJ, Lee YM, Lee CK, Jung JK, Han SB, Hong JT. Therapeutic applications of compounds in the Magnolia family. Pharmacology & therapeutics. 2011;130:157-76.
[21] Gou ML, Dai M, Li XY, Wang XH, Gong CY, Xie Y, et al. Preparation and characterization of honokiol nanoparticles. J Mater Sci Mater Med. 2008;19:2605-8.
[22] Li MH, Kothandan G, Cho SJ, Huong PT, Nan YH, Lee KY, et al. Magnolol Inhibits LPS-induced NF-kappaB/Rel Activation by Blocking p38 Kinase in Murine Macrophages. Korean J Physiol Pharmacol. 2010;14:353-8.
[23] Lee J, Jung E, Park J, Jung K, Lee S, Hong S, et al. Anti-inflammatory effects of magnolol and honokiol are mediated through inhibition of the downstream pathway of MEKK-1 in NF-kappaB activation signaling. Planta Med. 2005;71:338-43.
[24] Tse AK, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, et al. Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Molecular immunology. 2007;44:2647-58.
[25] Kshirsagar N. Drug delivery systems. Medknow Publications; 2000.
[26] Pillai O, Panchagnula R. Polymers in drug delivery. Current Opinion in Chemical Biology. 2001;5:447-51.
[27] Lu Y, Chen SC. Micro and nano-fabrication of biodegradable polymers for drug delivery. Advanced drug delivery reviews. 2004;56:1621-33.
[28] Freiberg S, Zhu XX. Polymer microspheres for controlled drug release. International Journal of Pharmaceutics. 2004;282:1-18.
[29] Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical research. 2000;17:100-6.
[30] Tamber H, Johansen P, Merkle HP, Gander B. Formulation aspects of biodegradable polymeric microspheres for antigen delivery. Advanced drug delivery reviews. 2005;57:357-76.
[31] Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B, Biointerfaces. 2010;75:1-18.
[32] Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release. 2001;70:1-20.
[33] Winzenburg G, Schmidt C, Fuchs S, Kissel T. Biodegradable polymers and their potential use in parenteral veterinary drug delivery systems. Advanced drug delivery reviews. 2004;56:1453-66.
[34] Park TG. Degradation of poly(d,l-lactic acid) microspheres: effect of molecular weight. Journal of Controlled Release. 1994;30:161-73.
[35] Bezemer JM, Radersma R, Grijpma DW, Dijkstra PJ, van Blitterswijk CA, Feijen J. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers: 2. Modulation of release rate. Journal of Controlled Release. 2000;67:249-60.
[36] Lynn DM, Amiji MM, Langer R. pH-Responsive Polymer Microspheres: Rapid Release of Encapsulated Material within the Range of Intracellular pH. Angewandte Chemie International Edition. 2001;40:1707-10.
[37] Meeusen EN, Snibson KJ, Hirst SJ, Bischof RJ. Sheep as a model species for the study and treatment of human asthma and other respiratory diseases. Drug Discovery Today: Disease Models. 2009;6:101-6.
[38] Azarmi S, Roa WH, Löbenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Advanced drug delivery reviews. 2008;60:863-75.
[39] Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Medicinal Research Reviews. 2009;29:196-212.
[40] Liu J, Gong T, Fu H, Wang C, Wang X, Chen Q, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm. 2008;356:333-44.
[41] Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release. 2010;147:408-12.
[42] Gerard J. Tortora , Berdell R. Funke , Case CL. Microbiology An Introduction Benjamin Cummings; 2003.
[43] Seshadri G, Sy JC, Brown M, Dikalov S, Yang SC, Murthy N, et al. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials. 2010;31:1372-9.
[44] Yang SC, Bhide M, Crispe IN, Pierce RH, Murthy N. Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases. Bioconjug Chem. 2008;19:1164-9.
[45] Verdon CP, Burton BA, Prior RL. Sample pretreatment with nitrate reductase and glucose-6-phosphate dehydrogenase quantitatively reduces nitrate while avoiding interference by NADP+ when the Griess reaction is used to assay for nitrite. Analytical biochemistry. 1995;224:502-8.
[46] Kao C-Y. Local and sustained delivery of hydrophobic drugs to the spinal cord with polyketal microparticles: Georgia Institute of Technology; 2009.
[47] Calvin Yu-Chian C. Magnolol encapsulated by different acyl chain length of liposomes on inhibiting proliferation of smooth muscle cells. Journal of the Taiwan Institute of Chemical Engineers. 2009;40:380-6.
[48] Lee S, Yang SC, Kao CY, Pierce RH, Murthy N. Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo. Nucleic Acids Res. 2009;37:e145.

QR CODE