簡易檢索 / 詳目顯示

研究生: 黃仁清
Jen-ching Huang
論文名稱: 結合分子動力學與變形理論於奈米切削之研究
Study on Combination of Molecular Dynamics and Deformation Theory for Nano-scale Cutting
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 翁政義
Cheng-I Weng
陳朝光
Chao-Kuang Chen
陳文華
Wen-Hwa Chen
王國雄
Kuo-Shong Wang
蔡穎堅
Ying-Chien Tsai
黃佑民
You-Min Huang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 191
中文關鍵詞: 分子動力學變形理論奈米直線切削奈米曲線切削
外文關鍵詞: molecular dynamics, finite deformation theory, nano linear cutting, nano curve cutting, copper, nickel
相關次數: 點閱:325下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文旨在建立結合分子動力學與變形理論,藉以探討奈米正交切削、圓錐刀具奈米直線切削與圓錐刀具奈米曲線切削等不同切削型態與不同切削深度與切削速度等加工參數對工件所產生之應變與應力及切削力之影響。同時亦進行奈米拉伸之研究,以提供所需之奈米級塑流曲線。
本文提出原子視為節點,晶格視為元素,結合分子動力學與有限元素法中形狀函數,以探討在奈米切削時單晶銅中央截面所產生的等效應力與等效應變的分布趨勢。本文亦提出一個在奈米拉伸時之應力計算方法-剛體邊界層介面力之奈米級應力計算模式,並發現應變速率對塑流曲線之K值與n值影響相當大。本文結合前述發展之奈米級塑流曲線與應變硬化率,推導出可應用於奈米切削之變形理論彈塑性關係矩陣,以探討奈米切削後之已加工面之殘留應力與殘留應變現象,且進一步分析不同切削速度對奈米級切削時工件的應力與應變分佈趨勢與切削力之影響。
本文進一步探討圓錐刀具之奈米直線加工,以探討不同切削參數對奈米級切削時工件的應力與應變分佈趨勢與切削力之影響。且提出奈米尺度切削力轉換因子,藉以估算實際奈米加工時之切削力,並以鑽石探針進行實際奈米直線加工實驗來相互驗證。本文亦探討銅材料之奈米曲線加工,並分析奈米曲線加工後之切屑堆積與已加工表面殘留應力與殘留應變等現象之影響。提出以插值法的觀念,將以多段等長小線段來形成奈米曲線動路,並以模擬退火演算法來得到等長直線動路的插值點。且以鑽石探針進行實際奈米曲線加工實驗,以探討應用插值法於實際的奈米曲線加工之可行性。並將奈米尺度切削力轉換因子,應用於實際奈米曲線加工時之切削力估算。本文結合以極低負荷之奈米壓痕試驗進行單晶鎳之楊氏係數量測值,進一步探討單晶鎳在圓錐刀具奈米切削時所產生的應力與應變。
期望本文的研究成果可做為奈米加工製程參數研究以及建構殘留應變與殘留應力分析模型的重要參考。


By the combination of molecular dynamics and finite deformation theory, the objective of this thesis is to investigate into the effect of different cutting types such as nano orthogonal cutting, conical shaped tool nano straight line cutting and nano curve cutting, and processing parameters such as different cutting depth and cutting speed towards the strain and stress, as well as the cutting force produced towards the workpiece. Also, it carried out a nano tensile research, so as to provide the required nanoscale flow curve. By taking atoms as nodes and lattics as elements, and by combining molecular dynamics and the shape function of the finite element method, this study investigates into the distribution trend of the equivalent strains and equivalent stress produced on the central cross section of the single crystal copper during nano cutting. This thesis also proposes a rigid boundary layer interface force (RIF) model for nanoscale stress calculation, so as to investigate into the strain-stress behavior of the nanoscale single copper crystal during the nano tension by means of molecular dynamics. Upon simulation, the effect of the strain rate towards the K and n values of the flow curve is very significant. By combining the abovementioned nanoscale flow curve developed and the strain hardening rate, this study derives the elastic-plastic relationship equation of nano-scale finite deformation theory that can be applied to nano cutting, so as to investigate into the phenomenon of residual strain, residual stress on the machined surface and the cutting force by the different cutting speed during nano cutting. This thesis also investigates into the effect of different cutting parameters towards the distribution trend of the strain and stress of the workpiece, as well as its cutting force during nano cutting by the conical shaped tool. Also, this thesis proposes a nanoscale action-force transfer factor (NAT factor), so as to predict the cutting force during practical nano cutting. Finally, it uses diamond probe to practice practical nano linear cutting experiment for verification. This thesis further investigates into the nano curve cutting of the single crystal copper, as well as analyzes into the heap of chip the nano curve after cutting, and the effect of the phenomenon such as the residual strain and residual stress of the machined surface. It proposes to use the concept of interpolation method to form nano curve path by many small segments. Also, by using the simulated annealing algorithm, the interpolation point of curve path having equal length can be acquired. With the use of diamond probe, practical nano curve processing experiment is executed, so as to investigate into the feasibility of applying interpolation method on the practical nano curve processing. This thesis then applies the NAT factor on the estimation of the cutting force during practical nano curve cutting. In order to understand the effect of processing parameters such as different material, different E value and lattic size etc. towards the cutting force and residual strain and residual stress, this study combines a nano indentation test having a very low loading to obtain Young's modulus of the single crystal nickel, so as to further investigate into the strain and stress produced by single crystal nickel by the conical shaped tool during nano cutting.
It is expected that the research result of this thesis can supply as an important reference for the researches on the parameters of nano cutting procedure, as well as the construction of the analytical models of residual strain and residual stress.

中文摘要 I Abstract II 誌 謝 III 目 錄 IV 符號索引 VIII 圖目錄 XI 表目錄 XVIII 第一章 緒 論 1 1.1研究動機及目的 1 1.2文獻回顧 2 1.2.1分子動力學奈米加工模擬之文獻 2 1.2.2結合分子動力學與有限元素法之文獻 4 1.2.3分子動力學奈米單軸向拉伸之文獻 5 1.3 本文架構 6 第二章 分子動力學理論與數值計算 9 2.1 分子動力學模擬物理模型與基本假設與步驟 9 2.1.1分子動力學奈米切削與奈米拉伸物理模型 9 2.1.2分子動力學基本假設 11 2.1.3分子動力學模擬之基本步驟 11 2.2 統計模型之選擇 13 2.3 週期性邊界 13 2.4 分子間作用力與勢能函數 14 2.5 運動方程式 16 2.6 數值計算方法 16 2.6.1實驗物理參數與無因次化 16 2.6.2 初始條件 17 2.6.3 Gear五階預測修正法則 19 2.6.4截斷半徑法與Verlet表列法 21 2.7計算流程圖 23 第三章 奈米切削之應變、應力與切削力計算 26 3.1「結合分子動力學、有限元素法二維形狀函數概念於奈米正交切削模式」之等效應變與等效應力計算 26 3.1.1原子級等效應變之計算 26 3.1.2原子級等效應力之計算 29 3.2「結合分子動力學、有限元素法形狀函數概念與三維變形理論奈米切削模式」之應變與應力計算 30 3.2.1 三維元素之原子級應變計算 30 3.2.2 三維元素之原子級應力計算 40 3.3 切削力之計算 43 第四章 結合有限元素法二維形狀函數概念之奈米級正交切削探討 45 4.1模擬條件 45 4.2切屑剝離準則之探討與切屑-刀具表面介面層原子之處理 47 4.3 FEM/MD模擬步驟 50 4.4 結果與討論 52 第五章 奈米級拉伸與塑流曲線探討 56 5.1 模擬條件 56 5.2 模擬步驟 58 5.3 奈米級應力之計算模式探討 59 5.3.1常見之奈米級應力公式 59 5.3.2剛體邊界層介面力之奈米級應力計算模式 60 5.4工程應變量的計算 63 5.5.結果與討論 63 第六章 結合奈米變形理論之奈米級正交切削探討 73 6.1 模擬條件 73 6.2模擬步驟 75 6.3 結果與討論 75 6.3.1切屑型態分析 75 6.3.2切削力分析 81 6.3.3殘留應變與殘留應力分析 84 第七章 結合奈米變形理論之圓錐刀具奈米級直線切削探討 91 7.1模擬條件與步驟 91 7.2 奈米尺度切削力估算模式之建構 95 7.3 奈米切削的實驗規劃 99 7.4 結果與討論 100 7.4.1 實際奈米切削實驗 100 7.4.2切削深度對切屑形成與切削力之影響 103 7.4.3切削速度對切屑形成與切削力之影響 110 7.4.4切削力估算模式驗證 112 7.4.5 切削深度對應變與應力之影響 116 7.4.6 切削速度對應變與應力之影響 129 第八章 結合奈米變形理論之圓錐刀具奈米級曲線切削探討 133 8.1模擬條件與步驟 133 8.2奈米曲線加工之曲線數學模式 134 8.3 結果與討論 135 8.3.1實際奈米曲線切削實驗與分析 135 8.3.2 奈米曲線加工模擬之切屑形成與切削力分析 138 8.3.3 應用切削力估算模式於奈米曲線加工之切削力 151 8.3.4應變與應力分析 153 第九章 結合奈米壓痕試驗之單晶鎳奈米級直線切削探討 161 9.1模擬條件 161 9.2極低負荷之奈米壓痕試驗 163 9.3結果與討論 167 9.3.1 實際奈米切削實驗 167 9.3.2切屑形成與切削力分析 168 9.3.3 應變與應力分析 171 9.3.4 鎳與銅之奈米直線切削的現象比較 176 第十章 結論與未來研究方向 178 10.1 結論 178 10.1.1 有關結合分子動力學、有限元素法二維形狀函數概念之奈米正交切削模式方面 178 10.1.2 有關奈米級拉伸與塑流曲線探討方面 179 10.1.3 有關結合奈米變形理論之奈米級正交切削探討方面 179 10.1.4 有關結合奈米變形理論之圓錐刀具奈米級直線切削探討方面 180 10.1.5 有關結合奈米變形理論之圓錐刀具奈米級曲線切削探討方面 181 10.1.6有關結合奈米壓痕試驗之單晶鎳奈米級直線切削探討方面 182 10.2未來研究方向 182 參考文獻 184 作者簡介 190 國立臺灣科技大學博碩士論文授權書 191

1. Maekawa, K. and A. Itoh, "A Friction and Tool Wear in Nano-scale Machining - a Molecular Dynamics Approach," Wear, Vol.188, pp.115-122 (1995).
2. Zhang, L.C. and H. Tanaka, "Towards a Deeper Understanding of Wear and Friction on the Atomic Scale - a Molecular Dynamics Analysis," Wear, Vol. 211, pp. 44-53 (1997).
3. Belak, J. and I.F. Stowers, "A Molecular Dynamics Model of the Orthogonal Cutting Process," Proc. Am. Soc. Precision Eng., pp.76-79 (1990).
4. Belak, J., D.B. Boercker and I.F. Stowers, "Simulation of Nanometre-scale Deformation of Metallic and Ceramic Surfaces," Mater. Res. Soc. Bull., Vol.18, pp.55-60 (1993).
5. Ikawa, N., S. Shimada, H. Tanaka and G. Ohmori, "An Atomistic Analysis of Nanometric Chip Removal as Affected by Tool-work Interaction in Diamond Turning," Ann. CIRP, Vol 40, No.1, pp.551-554 (1991).
6. Shimada, S., N. Ikawa, G. Ohmori and H. Tanaka, "Molecular Dynamics Analysis as Compared with Experimental Results of Micromachining," Ann. CIRP, Vol. 41, No. 1, pp.117-123 (1992).
7. Shimada, S., N. Ikawa, H. Tanaka, G. Ohmori, J. Uchikoshi and H. Yoshinaga, "Feasibility Study on Ultimate Accuracy in Microcutting Using Molecular Dynamics Simulation," Ann. CIRP, Vol.42, No.1, pp.91-94 (1993).
8. Shimada, S., N. Ikawa, H. Tanaka and J. Uchikoshi, "Structure of Micromachined Surface Simulated by Molecular Dynamics Analysis," Ann. CIRP, Vol.43, No.1, pp. 51-54 (1994).
9. Shimada, S., "Molecular Dynamics Analysis of Nanometric Cutting Process," Int. J. Jpn. Soc. Precis. Eng., Vol. 29, No.4, pp. 283-289 (1995).
10. Belak, J., D.A. Lucca, R. Komanduri, R.L. Rhorer, T. Moriwaki, K. Okuda, S. Ikawa, S. Shimada, H. Tanaka, T.A. Dow, J.D. Drescher and I.F. Stowers, "Molecular Dynamics Simulation of the Chip Forming Process in Single Crystal Copper and Comparison with Experimental Data," Proc. 6th. Annu. Conf. Am. Soc. Pre. Eng., pp.100-103 (1991).
11. Belak, J., "Nanotribology: Modelling Atoms when Surfaces Collide," Energy and Technology Review, pp.13-24 (1994).
12. Shimizu, J., H. Eda, M.Yoritsune and E. Ohmura, "Molecular Dynamics Simulation of Friction on the Atomic Scale," Nanotechnology, Vol. 9, pp.118-123 (1998).
13. Isono, Y. and T. Tanaka, "Three-dimensional Molecular Dynamics Simulation of Atomic Scale Precision Processing Using a Pin Tool," JSME Int. J. Ser. A: Mech. Mater. Eng., Vol. 40, No.3, pp. 211-218 (1997).
14. Isono, Y. and T. Tanaka, "Molecular Dynamics Simulation of Atomic Scale Indentation and Cutting Process with Atomic Force Microscope", JSME Int. J. Ser. A: Mech. Mater. Eng., Vol. 42, pp. 158-162 (1999).
15. Chandrasekaran, N., A. Noori-Khajavi, L.M. Raff and R. Komanduri, "A New Nethod for Molecular Dynamics Simulation of Nanometric Cutting," Philos. Mag. B, Vol.77, No. 1, pp.7-26 (1998).
16. Komanduri, R., N. Chandrasekaran and L.M. Raff, "Some Aspects of Machining with Negative Rake Tools Simulating Grinding: an MD Simulation Approach," Philos. Mag. B, Vol.79, No. 7, pp.955- 968 (1999).
17. Komanduri, R., N. Chandrasekaran and L.M. Raff, "Effect of Tool Geometry in Nanometric Cutting: an MD Simulation Approach," Wear, Vol. 219, pp. 84-97 (1998).
18. Fang, T.H. and C.I. Weng, "Three Dimensional Molecular Dynamics Analysis of Processing Using a Pin Tool on the Atomic Scale," Nanotechnology, Vol. 11, pp.148-153 (2000).
19. Fang, T.H., C.I. Weng and J.G. Chang, "Molecular Dynamics Simulation of Nano-lithography Process Using Atomic Force Microscopy", Surface Science, Vol. 501, pp.138-147 (2002).
20. Inamura, T., H. Suzuki and N. Takezawa, "Cutting Experiments in a Computer Using Atomic Models of Copper Crystal and a Diamond Tool," Int. J. Jpn. Soc. Precis. Eng., Vol.25, No.4, pp.259-266 (1991).
21. Inamura, T., N. Takezawa and N. Taniguchi, "Atomic-scale Cutting in a Computer Using Crystal Models of Copper and Diamond," Ann. CIRP, Vol.41, No. 1, pp.121-124 (1992).
22. Inamura, T., N. Takezawa and Y. Kumaki, "Mechanics and Energy Dissipation in Nanoscale Cutting," Ann. CIRP, Vol. 42, No. 1, pp. 79-82 (1993).
23. Inamura, T., N. Takezawa, Y. Kumaki and T. Sata, "On a Possible Mechanism of Shear Deformation in Nanoscale Cutting," Ann. CIRP, Vol.43, No.1, pp. 47-50. (1994)
24. Izumi, S., T. Kawakami and S. Sakai, "Study of a Combined FEM-MD Method for Silicon," JSME, Series A, Vol.44, pp.152-159 (2001).
25. Smirnova, J.A., L.V. Zhigilei and B.J. Garrison, "A Combined Molecular Dynamics and Finite Element Method Technique Applied to Laser Induced Press Wave Propagation," Computer Physics Communications, Vol. 118, pp.11-16 (1999).
26. Liu, P., Y. W. Zhang and C. Lu, "A Three-dimensional Concurrent Atomistic/continuum Analysis of an Eptiaxially Strained Island," Journal of Applied Physics, Vol. 94, No. 10, pp. 6350-6353 (2003).
27. Parrinello, M. and A. Rahman, "Strain Fluntulations and Elastic Constants," J. Chem. Phys., Vol. 76, No. 5, pp. 2662-2666 (1982).
28. Lutsko, J. F., "Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques," J. Appl. Phys., Vol.64, No. 3, pp. 1152-1154 (1988).
29. Schotz, J., T. Rasmussen, K. W. Jacobsen and O. H. Nielsen, "Mechanical Deformation of Nanocrystalline Materials," Philosophical Magazine Letters, Vol. 74, No. 5, pp. 339-344 (1996).
30. Iwaki, T., "Molecular Dynamics Study on Stress-strain in Very Thin Film (Size and Location of Region for Defining Stress and Strain)," JSME Int. J., Ser. A, Vol.39, No. 3, pp.346-353 (1996).
31. Miyazaki, N. and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method," JSME Int. J. Ser. A, Vol. 39, No. 4, pp. 606-612 (1996).
32. Ju, C. C., D. L. Chen, T. C. Chen and D. W. Fang, "Studies on Mechanical Behavior of Porous Nano-Single Crystal by Molecular Dynamics Analysis," 18th CSME Conference, Taiwan, Vol. 5, pp. 159-166 (2001).
33. Chen, D. L., C. C. Ju, T. C. Chen and D. W. Fang, " Effects of Torsion on Mechanical Behavior of Nanostructure by Molecular Dynamics Analysis," 18th CSME Conference, Vol.3, pp.1063-1070, Taiwan (2001).
34. Komanduri, R., N. Chandrasekaran and L.M. Raff, "Molecular Dynamics (MD) Simulation of Uniaxial Tension of Some Single-crystal Cubic Metals at Nanolevel," International Journal of Mechanical Sciences, Vol. 43, No. 10, pp.2237-2260 (2001).
35. Chang, W. J. and T.H. Fang, "Influence of Temperature on Tensile and Fatigue Behavior of Nanoscale Copper Using Molecular Dynamics Simulation," Journal of Physics and Chemistry of Solids, Vol. 64, pp.1279-283 (2003).
36. Lin, Z. C., J. C. Huang and Z.D. Chen, "Research on Tensile Model of Nano-scale Copper Material," 27th Conference on Theoretical and Applied Mechanics, Vol. 3, pp. 954-961, Taiwan (2003).
37. Arsenault, R.J. and J.R. Beeler, Computer Simulation in Material Science, Asm. International, USA (1988).
38. Smith, R. and M. Jakas, Atomic and Ion Collision in Solids and At Surface: Theory, Simulation and Application, Cambridge Universty Press, USA (1977).
39. Haile, J. M., Molecular Dynamic Simulation: Elementary Methods, John Wiely& Sons, Inc., USA (1992).
40. Verlet, L., "Computer Experiments on Classical Fluids (II) Equilibrium Correlations Function," Phy. Rev, Vol.165, pp.201-214 (1968).
41. Reif, F., Fundamentals of Statistical and Thermal Physics, McGraw Hill, pp. 48-49 (1985).
42. Tien, C. L. and J.H. Lienhard, Statistical Thermo Dynamics, Mei Ya Pub, pp.211-233 (1971).
43. Girifalco, L.A. and V.G. Weizer,”Applaction of the Morse Potential Function to Cubic Metals,” Phys. Rev., Vol.31, pp.459-466 (1959).
44. Komanduri, R. and N. Chandrasekaran, "Molecular dynamics simulation of atomic-scale friction," Phy. Rev. B, Vol.61, pp14007-14018 (2000).
45. Huebner, K. H. and E. A. Thornton, The Finite Element Method for Engineers, John Wiley and Sons, New York, pp.284-295 (1995).
46. Yamada, Y., Visco-elasticity Plasticity, Baifukan, Tokyo, Japan (1980).
47. Rao, S. S., The Finite Element Method in Engineering, New York, Pergamon Press Inc. pp.352-354 (1989).
48. Rau, J. S., "A Study on Mechanical Problems of Nanoscopic Micro-structures by Molecular Dynamics Theory", Ms. Thesis, Department of Mechanical Engineering, National Cheng Kung University, Taiwan (1999).
49. Ye, Y. Y., R. Biswas, J. R. Morris, A. Bastawros and A. Chandra, "A Molecular Dynamics Simulation of Nanoscale Machining of Copper, " Nanotechnology, Vol.14, pp.390-396 (2003).
50. Lin, Z. C. and W. C. Pan, "A Thermo-Elastic-Plastic Large Deformation Model for Orthogonal Cutting with Tool Flank Wear Part I: Computational Procedures, "nternational Journal of Mechanical Sciences, Vol. 35, No.10, pp. 829-840 (1993).
51. William D. Callister, Jr., Fundamentals of Materials Science and Engineering, John Wiely & Sons, Inc. USA (2001).
52. Benito, D., Ali S. Argon and S.Yip, "Molecular Dynamics Simulation of Crack Tip Process in Alapa-iron and Copper," J. Appl. Phys., Vol.54, No.9, pp. 4864-4878 (1983).
53. Shaw, M. C., Metal Cutting Principles, Oxford University Press, New York (1984).
54. Backer, W.R., E.R. Marshall and M.C. Shaw, "The Size Effect in Metal Cutting," Trans. ASME 74, pp.61-72 (1952).
55. TriboScope User Manual, Hysitron Inc (2002).
56. Dimension 3100 Manual, Veeco Metrotogy Group Digital Instruments (2002).
57. Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chem. Phys. Vol.21, No. 6, pp.1087-1092 (1953).
58. Kirkpatrick, S., C. D. Gelatt and M. P. Vecchi, "Optimization by Simulated Annealing," Science, Vol. 220, No.4598, pp. 671-680 (1983).
59. Handbook of Industrial Material, 2nd ed., Oxford, UK, Elsevier Advanced Technology (1992).

QR CODE