簡易檢索 / 詳目顯示

研究生: 陳俊翰
Jun-Han Chen
論文名稱: 兩種不同控制方法之零電壓切換全橋轉換器
Zero Voltage Switching Full-Bridge Converter with Two Different Control Schemes
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林長華
Chang-Hua Lin
林景源
Jing-Yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 70
中文關鍵詞: 不對稱控制循環損失責任週期控制零電壓切換
外文關鍵詞: asymmetrical control, circulation loss, duty cycle control, zero-voltage switching
相關次數: 點閱:259下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

傳統全橋轉換器被廣泛使用於高輸入電壓以及高功率的應用,其中有許多控制方法應用於全橋轉換器,像是對稱控制,相移控制,責任週期控制,以及不對稱控制,在這些的控制方法中,責任週期控制以及不對稱控制在過去鮮少被討論,因此將在本篇論文探討。
對稱控制控制用於全橋轉換器已經有很長一段時間,但因全橋轉換器它的開關為硬切換使電路有切換損失,而切換損失則會造成轉換器的效率下降以及限制轉換器的功率密度。
為了改善傳統全橋轉換器效率,在過去三十年,相移全橋轉換器作為改善效率的替代方案已成功被提出,因為相移全橋轉換器它的開關可以達成零電壓切換,因此可以降低切換損失,而相移全橋轉換器要進一步改善效率,可以藉由同步整流技術來降低二次側整流二極體的導通損失,然而廣泛用於相移全橋轉換器的控制IC,像是UC3875以及3895並沒有提供同步整流的驅動訊號,因此責任週期控制用於全橋轉換器可作為同步整流技術的替代控制方案,此外責任週期控制除了可提供同步整流驅動訊號之外也繼承了相移全橋轉換器的優點以及缺點,若要達到高效率以及簡易的控制的話,則可使用此控制,然而循環損失仍然存在於責任週期控制全橋轉換器以及相移控制全橋轉換器,因此使用不對稱全橋轉換器來檢驗循環損失問題。
本論文除了對研製之電路進行動作原理與理論分析,並且也進行實驗結果之驗證,研製電路之規格如下: 輸入電壓: 300-400V;輸出電壓12V;額定功率360W;操作頻率:100 kHz。經由實驗結果驗證以及比較,均具有與理論分析之結果相符。


A conventional full-bridge converter has been widely used in high input-voltage, high-power applications. Several control schemes have been applied to full-bridge converter, such as symmetrical control, phase shift control, duty cycle control, and asymmetrical control. Among these, duty cycle control and asymmetrical control have been seldom discussed and will be investigated in this thesis.
Employing symmetrical control, full bridge has been used for a long time. It suffers from large switching losses due to its hard-switching operation. It will impact the conversion efficiency and limit power density.
To improve the efficiency, phase shift full-bridge converter (PSFB) was successfully proposed instead in the last three decades. Because it can achieve ZVS operation, the switching turn-on losses are significantly reduced. To further improve efficiency, the conduction losses of the rectifier diode can be decreased by employing synchronized rectifier technique. However, two additional driver signals are not available in the popularly used phase shift controllers, such as UC3875 and UC3895.
As an alternative control scheme, full-bridge converter with duty cycle control (FBDC) is investigated. In addition to inheriting the advantages and the disadvantages of PSFB, FBDC can directly provide synchronous rectification driver signals if higher efficiency and simple controller design are demanded.
However, a circulation loss problem occurs in FBDC as well as in PSFB. Accordingly, a full-bridge converter with asymmetrical control is thus examined.
In addition to the descriptions of the operation principle and design consideration, two hardware circuits, FBDC and AFB, with same 300-400-V input and 12-V/ 360W output specifications were built and compared.

Abstract I Acknowledgements III Table of Contents IV List of Figures VI List of Tables IX Chapter 1. Introduction 1 1.1. Background and Motivation 1 1.2. Objectives of the Thesis 7 1.3. Organization of the Thesis 7 Chapter 2. ZVS Full-Bridge Converter with Duty Cycle Control (FBDC) 8 2.1. Introduction 8 2.2. Operational Principle 11 2.3. Circuit Analysis 17 2.3.1. Voltage gain 17 2.3.2. Zero voltage switching conditions 17 2.3.3. Required dead time 18 2.3.4. Duty cycle loss 19 2.3.5.Circulation loss 20 2.4. Circuit Design 21 2.4.1. Transformer design 21 2.4.2. Output inductor Lf 24 2.4.3. Output capacitor 26 2.4.4. Semiconductor components 26 2.5. Experimental Results 27 2.6. Summary 30 Chapter 3. ZVS Full-Bridge Converter with Asymmetrical Control (AFB) 31 3.1. Introduction 31 3.2. Operational Principle 35 3.3. Circuit Analysis 41 3.3.1. Voltage gain 41 3.3.2. Voltage stress 42 3.3.3. Transformer dc-bias current 42 3.3.4. ZVS condition 44 3.3.5. Duty cycle loss 45 3.3.5. Circulation loss 46 3.4. Circuit Design 47 3.4.1 Clamping capacitor Cc1 48 3.5. Experimental Results 48 3.6. Summary 53 Chapter 4. Conclusions and Future Research 54 4.1. Conclusions 54 4.2. Future Researches 55 Reference 56 Vita 60

[1] J. A. Sabate, V. Vlatkovic, R. B. Ridley, and F. C. Lee, “High-voltage, high-power, ZVS, full-bridge PWM converter employing an active snubber,” IEEE APEC’91, pp.158-163, Mar. 1991.
[2] R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge DC/DC converter: analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” IEEE Trans. Power Electron, vol. 6, no. 3, pp. 408-418, Jul. 1991.
[3] W. Chen, F. C. Lee, M. M. Jovanovic and J. A. Sabate, “A Comparative Study of a Class of Full Bridge Zero-Voltage-Switched PWM Converters,” IEEE APEC’95, vol. 2, pp. 893-899, Mar. 1995.
[4] R. Redl, L. Balogh, D. W. Edwards, “Optimum ZVS full-bridge DC/DC converter with PWM phase-shift control: analysis, design considerations, and experimental results,” IEEE APEC’94, vol.1, pp. 159-165, Feb. 1994.
[5] G. Hua, and F. C. Lee, “Soft-Switching Techniques in PWM Converters,” IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595-603, Dec. 1995.
[6] X.Ruan and Y. Yan, “Soft-switching techniques for PWM full bridge converters,” in Proc. IEEE power Electron. Spec. Conf. (PESC 2000), pp. 634-639.
[7] H. L. Do, “Asymmetrical Full-bridge Converter with Hgih-Voltage Gain,” IEEE Trans. Ind. Electron., vol. 27, no. 2, pp. 860-868, Feb. 2012.
[8] B. Y. Chen and Y. S. Lai, “Switching Control Technique of Phase-Shift-Converter to Improve Efficiency Under Light-Load and Standby Conditions without Additional Auxiliary Components,” IEEE Trans. Power Electron, vol. 25, no. 4, pp. 1001-1012, Apr. 2010.
[9] C. S. Leu, “A novel full-bridge configuration for high power applications: built-in input filter full-bridge converter (BIFFBC),” in IEEE Power Electron. Specialists Conf. (PESC), vol. 1, St. Louis, MO., Jun. 22-27, 1997, pp. 763-768.
[10] C. S. Leu, “Improved forward topologies for DC-DC applications with built-In input filter,” Ph.D. dissertation, Virginia Polytechnic Institute. And State University, Electrical and Computer Engineering Dept., Virginia, 2006.
[11] N. H. Kutkut and D. M. Divan, “An improved full-bridge zero-voltage switching PWM converter using a two-inductor rectifier,” IEEE Trans. Ind. Applicat., vol. 31, no. 1, pp. 119-126, Jan/Feb. 1995.
[12] J. G. Cho, J. A. Sabate, G. Hua, F. C. Lee, “Zero-Voltage and Zero-Current-Switching Full Bridge PWM Converter for High Power Appications,” in IEEE Power Electron. Specialists Conf. (PESC), vol. 1, Taipei., Jun. 20-25, 1994. pp. 102-108.
[13] D. C. Martins, F. C. Castaldo, “Application of the ZVS-PWM commutation cell to a full-bridge DC-DC converter,” IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 3, pp. 379-388, March. 1999.
[14] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. R. McNutt, A. B. Lostetter, J. S. Lee, K. Shiozaki, “A High-Density, High-Efficiency, Isolated On-Board Vehicle Battery Charger Utilizing Silicon Carbide Power Devices,” IEEE Trans. Power Electron, vol. 29, no. 5, pp. 2606-2617.
[15] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, “Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter,” IEEE APEC’90, pp. 275-284, Mar. 1990.
[16] Z. Chen, W. Xinke and Z. M. Qian, “Optimum design considerations for Soft-switched Phase-shift Full-bridge converter with primary-side energy storage inductor,” IEEE PESC’08, pp. 366-371, June. 2008.
[17] Y. Jang and M. M. Jovanovic, “A New PWM ZVS Full-Bridge Converter,” IEEE Trans. Power Electron, vol. 22, no. 3, pp. 987-994, May. 2007.
[18] Y. Jang and M. M. Jovanovic, “A New Family of Full-Bridge ZVS Converters,” IEEE Trans. Power Electron, vol. 19, no. 3, pp. 701-708, May. 2004.
[19] P. K. Jain, W. Kang, H. Soin and Y. H. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology,” IEEE Trans. Power Electron. Vol. 17, no. 5, Sep. 2002.
[20] P.Xu, J. Wei, K. W. Yao, Y.Meng and F. C. Lee, “Investigation of candidate topologies for 12V VRM,” IEEE APEC’02, vol. 2, pp. 686-692, 2002.
[21] C. Iannello, L. Shiguo and I. Batarseh, “Small-signal and transient analysis of a full-bridge, zero-current-switched PWM converter using an average model,” IEEE Trans. Ind. Electron., vol. 18, no. 3, pp. 793-801, May. 2003.
[22] X. F. Xu, “Small-signal model for current mode control full-bridge phase-shifted ZVS converter,” IEEE IPEMC’00, vol. 1, pp. 514-518, 2000.
[23] B. Y. Chen and Y. S. Lai, “Novel dual mode operation of phase-shifted full bridge converter to improve efficiency under light load condition,” IEEE ECCE’09, pp. 1367-1374, Sept. 2009.
[24] J. B. Wang, R. Li and J. Chen, “Efficiency comparison of the full bridge converters in considered magnetic saturation,” IEEE IECON’08, pp. 717-722, Nov. 2008.
[25] L. H. Mweene, C. A. Wright and M. F. Schlecht, “A 1 kW 500 kHz front-end converter for a distributed power supply system,” IEEE Trans. Ind. Electron., vol. 6, no. 3, pp. 398-407, Jul. 1991.
[26] “TDK’s European Website for Electronic Components & Systems,” [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
[27] C. P. Basso. Switch-Mode Power Supplies, New York: McGraw-Hill, 2008.
[28] George C. Chryssis, High-frequency switching power supplies, New York: McGraw Hill, 1995.
[29] Transformer Design, Product Selection Guide 2003, http://www.ferroxcube.com/
[30] N. Mohan, T. M. Undeland, and W, P. Robbins, Power Electronics: Converter, Applications, and Design, 3rd Ed, John Wiley&Sons, Inc, 2003.
[31] SIMetrix Technologies Ltd. (2012). User’s Mannual. [Online]. Available: http://www.simetrix.co.uk/Files/manuals/6.2/UsersManual.pdf

QR CODE