簡易檢索 / 詳目顯示

研究生: 蕭智齡
Chih-Ling Hsiao
論文名稱: 窄頻物聯網系統之時間前置隨機接入程序的效能分析
Performance Analysis of Timing Advance Random Access Procedure for NB-IoT Systems
指導教授: 鄭瑞光
Ray-Guang Cheng
口試委員: 許獻聰
Shiann-Tsong Sheu
簧琴雅
Chin-Ya Huang
王瑞堂
Ruei-Tang Wang
鄭瑞光
Ray-Guang Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 52
中文關鍵詞: 窄頻物聯網隨機存取程序時間前置傳送機制
外文關鍵詞: NB-IoT, random access procedure, timing advance random access procedure
相關次數: 點閱:343下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

窄頻物聯網是第三代合作夥伴(3GPP)計劃用於支援廣域物聯網的標準,甚至作為第五代行動通訊網路(5G)中大規模機器型通訊(mMTC)項目的基礎。在窄頻物聯網系統中,本篇論文用數學分析去驗證窄頻物聯網系統之時間前置隨機接入程序(timing advance based random access procedure, TARA)的效能並與傳統隨機接入程序的效能做比較,其中在性能指標的部分主要探討隨機接入程序的成功接入機率與平均接入延遲。TARA透過比對基地台端傳送的時間前置值與物聯網裝置的時間前置值來讓一些在傳統型隨機接入程序中碰撞的物聯網裝置有機會能夠完成隨機接入程序,由數學分析式發現用TARA能增加在隨機接入程序中成功接入的物聯網裝置數量並降低隨機存取所花費之傳送次數,並讓部分碰撞裝置中提早離開碰撞之隨機存取程序,以提升裝置成功聯網機率。


Narrowband Internet of Things (NB-IoT) is a new 3GPP standard aiming to support a massive number of device features long range, low complexity, low power, and low data rate. The 5th generation mobile communication (5G) massive machine type communication (mMTC) field will base on NB-IoT system. In this paper, we use mathematical analysis to verify the performance of the timing advance random access procedure (TARA) of the NB-IoT system and compare with the traditional random access (RA) procedure. TARA procedure allows some of collision NB-IoT devices in the traditional RA procedure to have the opportunity to complete the RA procedure by match function between the timing advance value from base station and the timing advance value stored in NB-IoT device. From mathematical analysis, we found that TARA procedure can increase the access success probability and reduce the average access delay.

1. Introduction 2. Timing advance based RA 3. System model 4. Analytical model 5. Numerical results 6. Conclusion and future work

1. 3GPP TS 36.213, “Physical layer procedures,” V13.2.0, June 2016.
2. Z. Wang and V. W. S. Wong, "Optimal access class barring for stationary machine type communication devices with timing advance information," in IEEE Transactions on Wireless Communications, vol. 14, no. 10, Oct. 2015, pp. 5374-5387.
3. Z. Wang and V. W. S. Wong, "Joint access class barring and timing advance model for machine-type communications," 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, 2014, pp. 2357-2362.
4. G. Y. Lin et al., "Estimation and adaptation for bursty LTE random access," IEEE Transactions on Vehicular Technology, vol. 65, no. 4, April 2016, pp. 2560-2577.
5. Suyang Duan, Vahid Shah-Mansouri, Vincent W. S. Wong. “Dynamic Access Class Barring for M2M Communications in LTE Networks.” IEEE Global Communications Conference, 9-13 Dec. 2013, pp. 4747-4752
6. Israel Leyva-Mayorga, Luis Tello-Oquendo, Vicent Pla, Jorge Martinez-Bauset, Vicente Casares-Giner. “Performance Analysis of Access Class Barring for Handling Massive M2M Traffic in LTE-A Networks.” IEEE International Conference on Communications, 22-27 May 2016, pp. 1-6
7. P. Zhou et al., "An efficient random access scheme for OFDMA systems with implicit message transmission," in IEEE Transactions on Wireless Communications, vol. 7, no. 7, July 2008, pp. 2790-2797.
8. S. Vural et al., "Success Probability of Multiple-Preamble-Based Single-Attempt Random Access to Mobile Networks," in IEEE Communications Letters, vol. 21, no. 8 , Aug. 2017, pp. 1755-1758.
9. S. Beom Seo et al., "A dual preamble random access protocol for reducing access congestion in disaster situations," 2017 19th International Conference on Advanced Communication Technology (ICACT), Bongpyeong, 2017, pp. 121-127.
10. C. H. Wei, R. G. Cheng and S. L. Tsao, "Performance Analysis of Group Paging for Machine-Type Communications in LTE Networks," IEEE Transactions on Vehicular Technology, vol. 62, no. 7, pp. 3371-3382, Sept. 2013.
11. Yi-Shin Huang, “Random Access Procedure for Machine Type Communication in Mobile Networks,” Bc., Dept. Elect. Eng., NTUST, 2017
12. K. S. Ko et al., "A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems," in IEEE Communications Letters, vol. 16, no. 9, September 2012, pp. 1428-1431.
13. A. Hunt et al., "Effects of channel environment on timing advance for mobile device positioning in long-term evolution networks," 2016 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2016, pp. 643-647.
14. Leslie Jarvis, John McEachen, Herschel Loomis. “Geolocation of LTE Subscriber Stations Based on the Timing Advance Ranging Parameter” Military Communications Conference, 7-10 Nov. 2011, pp. 180-187
15. 3GPP TS 36.331, “Radio resource control (RRC) protocol specification,” V13.2.0, June 2016.
16. 3GPP TS 36.321, “Medium access control (MAC) protocol specification,” V13.2.0, June 2016.
17. C. H.Wei, R. G. Cheng, and S. L. Tsao, “Modeling and estimation of oneshot random access for finite-user multichannel slotted ALOHA systems,” IEEE Commun. Lett., vol. 16, no. 8, pp. 1196–1199, Aug. 2012.
18. I. Oppermann et al., “Wide-band wireless local loop channel for urban andsub-urban environments at 2 GHz,” in IEEE International Conference Communication, 1997, pp. 61-65.
19. J.F. Kepler et al., “Delay spread measurements on a wideband MIMO channel at 3.7 GHz,” Proceedings IEEE 56th Vehicular Technology Conference, 2002, vol.4 , pp. 2498-2502.
20. A. Kanatas et al., “Wideband characterization of microcellular suburban mobile radio channels at 1.89 GHz,” Proceedings IEEE 56th Vehicular Technology Conference, 2002, vol.2 , pp. 1060-1064.

無法下載圖示 全文公開日期 2024/08/27 (校內網路)
全文公開日期 2024/08/27 (校外網路)
全文公開日期 2035/08/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE