簡易檢索 / 詳目顯示

研究生: 莊滿如
Man-Ju Chuang
論文名稱: 考量時間限制下之多階狀態多產品物流網路可靠度
Study on Network Reliability for a Multistate Multi-Commodity Logistics Network with Time Constraint
指導教授: 林義貴
Yi-Kuei Lin
口試委員: 紀佳芬
Chia-Fen Chi
黃誠甫
Cheng-Fu Huang
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 及時交貨物流中心多起點多終點多產品物流網路時窗網路可靠度
外文關鍵詞: Delivery on time, Distribution center, Multiple sources and sinks, Multistate Multi-commodity Logistics Network (MMLN), Time Windows, Network Reliability
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在現實生活中,及時交貨為一物流系統之主要績效指標,且配送情況經常為由多個供應商配送多種產品至多個需求點之物流系統。本研究建構多階狀態多產品物流網路(multistate multi-commodity logistics network, MMLN)模型,因業者所提供的車數可能基於配給其他客戶使用,故客戶能使用的貨車數量為多階狀態且對應一機率分配。此網路包含了節點(node)與傳輸邊(route),其中傳輸邊代表連接兩節點之路線,而節點則為供應商(supplier)、物流中心(distribution center)或是
區域(region),且多家零售店因地理位置而形成一區域。在運輸時間上,本研究考量了旅行時間、服務時間以及配送時間,服務時間包含卸貨、揀貨與裝載等,配送時間則因區域內的車數多寡所影響,而車輛到達物流中心的時間必須在時窗(time windows)之內。本研究提出一網路可靠度(network reliability)做為物流績效指標用以評估時窗、時間限制下之多階狀態多產品物流網路,網路可靠度之定義為此網路在時間限制下成功滿足區域需求量之機率。本研究首先針對每一供應商提供一特定產品之情境提出一演算法以求得滿足區域需求及時間限制之網路可靠度,透過一實際案例探討零售企業之物流系統以演示所提出之演算法。接著,為了更貼近真實的物流狀況,本論文進一步將每一供應商提供多樣化產品納入考量,並針對每供應商提供多種產品之狀況發展新演算法進行網路可靠度計算。從決策觀點,管理者可運用所提出兩演算法求算網路可靠度,透過此績效指標了解多階狀態多產品物流網路之能力,並進行更進一步的決策與分析。


In real world, logistics systems are often used to characterize the distribution of multi-commodity with multiple sources and sinks within the promised time constraint. Moreover, network has been adopted extensively in many real-world systems. This thesis focuses on a logistics network with suppliers, distribution centers, or regions, and routes. In the region, numerous retailers and demand requirement are contained. The available capacity on each route is stochastic and multistate because the capacity may be partially reserved by other customers, and the logistics network can be regarded as a multistate multi-commodity logistics network (MMLN). This thesis is mainly to evaluate network reliability. Such network reliability can be treated as a logistics performance index. We consider the total delivery time consisting of travel time, service time, and distribution time, where service time contains unloading, picking, and loading time, and the time when vehicles arrive at distribution center should be within the time window. An algorithm is firstly proposed to calculate network reliability and a practical case of convince store logistics system is presented to emphasize the managerial implication of network reliability. Moreover, a model is further extended to each supplier has a variety of commodities to delivery, and an algorithm is further developed in terms of minimal paths to evaluate the network
reliability. From the decision-making viewpoint, supervisors can evaluate network
reliability by proposed algorithms and treat it as a capability indicator to know
whether MMLN satisfies demand within a time constraint and make decisions.

CONTENT 摘要..................................................................................... I ABSTRACT .................................................................................................................. II ACKNOWLEDGMENTS ........................................................................................... III CONTENT ................................................................................................................... IV LIST OF FIGURES ..................................................................................................... VI LIST OF TABLES ..................................................................................................... VII CHAPTER 1 INTRODUCTION ................................................................................... 1 1.1 Background and motivation ................................................................................. 1 1.2 Research objectives .............................................................................................. 3 1.3 Organization of the thesis ..................................................................................... 4 CHAPTER 2 LITERATURE REVIEW ........................................................................ 7 2.1 Vertical Integration and logistics systems ............................................................ 7 2.2 Time Window ....................................................................................................... 8 2.3 Multistate network and network reliability .......................................................... 9 CHAPTER 3 NETWORK RELIABILITY FOR MMLN (Model Ⅰ) ........................... 11 3.1 MMLN model and assumptions ......................................................................... 13 3.2 Total delivery time ............................................................................................. 14 3.3 Capacity vector ................................................................................................... 17 3.4 (D, T)-MP and reliability evaluation .................................................................. 18 3.5 Algorithm for model I ........................................................................................ 21 3.6 Examples for MMLN ......................................................................................... 23 3.6.1 An illustrative example ................................................................................ 23 3.6.2 A case study for convince store logistics system of retails ......................... 27 V CHAPTER 4 AN EXTENDED MODEL WITH MULTI-COMMODITY IN EACH SOURCE (Model Ⅱ) .................................................................................................... 31 4.1 Extended MMLN model and assumptions ......................................................... 32 4.2 Flow vector ......................................................................................................... 32 4.3 Total delivery time ............................................................................................. 33 4.4 Capacity vector ................................................................................................... 35 4.5 Algorithm for model Ⅱ ....................................................................................... 38 4.6 Examples for MMLN with multi-commodity in each source ............................ 40 4.6.1 An illustrative example ................................................................................ 40 4.6.2 A case study for convince store logistics system of retails ......................... 45 4.7 Numerical experiments for convince store logistics system .............................. 48 CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH ................................... 51 5.1 Conclusions ........................................................................................................ 51 5.2 Future research ................................................................................................... 53 REFERENCES ............................................................................................................ 55

REFERENCES
Arrow, K. J., Vertical integration and communication, The Bell Journal of Economics, Vol. 6, pp. 173-183 (1975).
Aven, T., Reliability Evaluation of Multistate Systems with Multistate Components, IEEE Transactions on Reliability, Vol. R-34, pp. 473-479 (1985).
Bai, G., Zuo, M. J. and Tian, Z., Ordering Heuristics for Reliability Evaluation of Multistate Networks, IEEE Transactions on Reliability, Vol. 64, pp. 1015-1123
(2015a).
Bai, G., Zuo, M. J. and Tian, Z., Search for all d-MPs for all d levels in multistate two-terminal networks, Reliability Engineering & System Safety, Vol. 142, pp. 300-309 (2015b).
Chen, S. G., Fuzzy-scorecard based logistics management in robust SCM, Computers
and Industrial Engineering, Vol. 62, pp. 740–745 (2012).
Chen, Y. L. and Yang, H. H., Finding the first K shortest paths in a time-window
network, Computers & Operations Research, Vol. 31, pp. 499-513 (2004).
Chiu, N. H., The integrated logistics management system: a framework and case study, International Journal of Physical Distribution & Logistics Management, Vol. 25, pp.4-22 (1995).
Chopra, S., Designing the distribution network in a supply chain, Transportation
Research Part E: Logistics and Transportation Review, Vol. 39, pp. 123-140
(2003).
Colbourn C. J., The combinatorics of network reliability, New York: Oxford
University Press, (1987).
Daugherty, P. J., Ellinger, A. E. and Gustin, C. M., Integrated logistics: achieving logistics performance improvements, Supply Chain Management: An International Journal, Vol. 1, pp. 25-33 (1996).
El Khadiri, M. and Yeh, W. C., An efficient alternative to the exact evaluation of the quickest path flow network reliability problem, Computers & Operations
Research, Vol. 76, pp. 22-32 (2016).
Ford, L. R. and Fulkerson, D. R., Flows in Networks, New Jersey: Princeton
University (1962).
Ghane-Ezabadi, M. and Vergara, H. A., Decomposition approach for integrated
intermodal logistics network design, Transportation Research Part E:
Logistics and Transportation Review, Vol. 89, pp. 53-69 (2016).
Huang, C. F., Evaluation of system reliability for a stochastic delivery-flow
distribution network with inventory, Annals of Operations Research, pp, 1-13
(2017).
Hudson, J. C. and Kapur, K. C., Reliability Bounds for Multistate Systems with
Multistate Components, Operations Research, Vol. 33, pp. 153-160 (1985).
Ioannou, G., Kritikos, M. and Prastacos, G., A greedy look-ahead heuristic for the vehicle routing problem with time windows, Journal of the Operational
Research Society, Vol. 52, pp. 523-537 (2001).
Jane, C. C. and Laih, Y. W., Computing multi-state two-terminal reliability through critical arc states that interrupt demand, IEEE Transactions on Reliability, Vol. 59, pp. 338-345 (2010).
Jimenez, J. A., Mendez, F. A. and Temponi, C. A., A DataIntensive Analysis
Augmented Simulation Model of a Distribution Center Operations, In Lecture
presented at Information Systems Logistics and Supply Chain Annual
Conference (2016).
Kreng, V. B. and Chen, F. T., Three echelon buyer--supplier delivery policy—a supply chain collaboration approach, Production Planning & Control, Vol. 18, pp.
338-349 (2007).
Kutanoglu, E. and Lohiya, D., Integrated inventory and transportation mode selection: A service parts logistics system, Transportation Research Part E: Logistics and Transportation Review, Vol. 44, pp. 665-683 (2008).
Kuo, R. J., Chi, S. C. and Kao, S. S., A decision support system for selecting
convenience store location through integration of fuzzy AHP and artificial
neural network, Computers in industry, Vol. 47, pp. 199-214 (2002).
Lin, J. S., Jane, C. C. and Yuan, J., On reliability evaluation of a capacitated‐flow network in terms of minimal pathsets, Networks, Vol. 25, pp. 131-138 (1995).
Lin, Y. K., Study on the Multicommodity Reliability of a Capacitated-Flow Network, Computers and Mathematics with Applications, Vol. 42, pp. 255-264 (2001).
Lin, Y. K., Overall-Terminal Reliability of A Stochastic Capacitated-Flow Network, Mathematical and Computer Modelling, Vol. 36, pp. 173-181 (2002).
Lin, Y. K., Extend the quickest path problem to the system reliability evaluation for a stochastic-flow netwrok, Computers & Operations Research, Vol. 30, pp.
567-575 (2003).
Lin, Y. K., System reliability of a limited-flow network in multicommodity case,
IEEE Transactions on Reliability, Vol. 56, pp. 17-25 (2007).
Lin, Y. K., Spare routing reliability for a stochastic flow network through two minimal paths under budget constraint, IEEE transactions on reliability, Vol. 59, pp. 2-10 (2010).
Lin, Y. K., Network Reliability of a Time-Based Multistate Network Under Spare
Routing With p Minimal Paths, IEEE Transactions on Reliability, Vol. 60, pp.
61-69 (2011).
Lin, Y. K. and Chang, P. C., Evaluation of system reliabilities for a maintainable stochastic-flow network, IEEE Transactions on Reliability, Vol. 61, pp. 398-409 (2012a).
Lin, Y. K. and Chang, P. C., System reliability of a manufacturing network with
reworking action and different failure rates, International Journal of
Production Research, Vol. 50, pp. 6930-6944 (2012b).
Lin, Y. K. and Huang, C. F., Reliability assessment of a stochastic node-failure
network with multiple sinks under tolerable error rate, International Journal of
Computer Mathematics, Vol. 91, pp. 819-833 (2014).
Lin, Y. K. and Yeh, C. T., Optimal carrier selection based on network reliability
criterion for stochastic logistics networks, International Journal of Production
Economics, Vol. 128, pp. 510-517 (2010).
Lin, Y. K., Huang, C. F. and Chang, P. C., System reliability evaluation of a touch panel manufacturing system with defect rate and reworking, Reliability
Engineering & System Safety, Vol. 118, pp. 51-60 (2013).
Lin, Y. K., Yeh, C. T. and Huang, C. F., Reliability assessment of a multistate freight network for perishable merchandise with multiple suppliers and buyers,
International Journal of Systems Science, Vol. 48, pp. 74-83 (2017).
Pasandideh, S. H. R., Niaki, S. T. A. and Nia, A. R., A genetic algorithm for vendor managed inventory control system of multi-product multi-constraint economic order quantity model, Expert Systems with Applications, Vol. 38, pp.
2708-2716 (2011).
Roberts F. S., Hwang F. K. and Monma C., Reliability of computer and communication networks, DIMACS series in discrete mathematics and
theoretical computer science, Vol. 5, (1991).
Rosen, J. B., Sun, S. Z. and Xue, G. L., Algorithms for the Quickest Path Problem and th Enumeration of Quckest Paths, Computer & Operations Research, Vol. 18,
pp. 579-584 (1991).
Sajjadi, S. R. and Cheraghi, S. H., Multi-products location–routing problem integrated with inventory under stochastic demand, International Journal of Industrial and Systems Engineering, Vol. 7, pp. 454-476 (2011).
Shih, C. W. and Wand C. H., Integrating wireless sensor networks with statistical
quality control to develop a cold chain system in food industries, Computer
Strandards & Interfaces, Vol. 45, pp. 62-78 (2016).
Wang, J. J., The model of time-based logistics and its application, Information
Management and Engineering, pp. 517-521 (2010).
Weitz, B. A. and Jap, S. D., Relationship marketing and distribution channels, Journal of the academy of Marketing Science, Vol. 23, pp. 305-320 (1995).
Xue, J., On multistate system analysis, IEEE Transactions on Reliability, Vol. 34, pp. 329–337 (1985).
Yarlagadda, R. and Hershey, J., Fast algorithm for computing the reliability of
communication network, International Journal of Electronics, Vol. 70, pp.
549–564 (1991).
Yeh, W. C. and Chu, T. C., A Novel Multi-Distribution Multi-State Flow Network and its Reliability Optimization Problem, Reliability Engineering & System Safety, Vol. 176, pp. 209-217 (2018).
Yeh, W. C., Lin, L. E., Chou, Y. C. and Chen, Y. C., Optimal routing for
multi-commodity in multistate flow network with time constraints, Quality
Technology & Quantitative Management, Vol. 10, pp. 161-177 (2013).
Zou, X., Pokharel, S. and Piplani, R., Channel coordination in an assembly system
facing uncertain demand with synchronized processing time and delivery quantity, International journal of production research, Vol. 42, pp. 4673-4689 (2004).
Zuo, M. J., Tian, Z. and Huang, H. Z., An efficient method for reliability evaluation of multistate networks given all minimal path vectors, IIE Transactions, Vol. 39, pp. 811-817 (2007).

無法下載圖示 全文公開日期 2023/08/01 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE