簡易檢索 / 詳目顯示

研究生: 陳雯惠
Wen-hui Chen
論文名稱: 新一代房屋結構耐震性能評估所需之地表加速度歷時記錄縮放法研究
A New Ground-Motion Scaling Procedure for Seismic Performance Assessment of Buildings
指導教授: 黃震興
Jenn-Shin Hwang
口試委員: 黃尹男
Yin-Nan Huang
邱建國
Chien-Kuo Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 129
中文關鍵詞: ATC-58縮放地表加速度歷時非線性動力分析
外文關鍵詞: ATC-58, ground-motion scaling, nonlinear response-history analyses
相關次數: 點閱:165下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • FEMA273及274,FEMA356及ASCE/SEI41-06等第一代耐震性能評估皆是以結構受震後之反應做為評定結構性能指標之依據,但此評估法之缺點包含:(1)少部分構件的破壞決定了整體結構之耐震性能;(2)忽略非結構元件及設備之損失;(3)使用特定的地震強度大小來分析結構反應,忽略地震強度、材料性質、結構反應及損壞情形等隨機性。基於此,美國ATC-58於2011年年底提出新一代房屋結構耐震性能準則之草案,以結構修繕金額、修復時間或死亡人數為性能指標,以協助工程師與業主、房屋使用者進行較有效的溝通。ATC-58的評估方法涉及非線性動力分析,本研究考量新一代房屋結構耐震性能評估方法之需要,以特殊抗彎矩構架與偏心斜撐構架為例,透過非線性動力分析,探討Geometric-Mean Scaling、Modal-Pushover-Based Scaling、Distribution Scaling三種縮放地表加速度歷時震幅之方法,對層間位移、最大樓層加速度及平均樓層加速度反應譜等結構反應分佈的影響。


    The ATC-58 project in the United States is developing new procedures for building-specific seismic performance (loss) assessment. The new procedures will characterize performance in terms of direct economic loss, indirect economic loss and casualties rather than by building component deformations and accelerations. Uncertainty and randomness will be captured in every step of the performance assessment process. A key issue in the new procedures, which involve the use of nonlinear response-history analysis, is the scaling of ground motions. The scaling procedures should preserve the distribution (e.g., both median and dispersion) in the earthquake shaking for the site of interest so that one can properly capture the distribution of structural responses and demand on secondary systems. A series of nonlinear response-history analyses are performed in this study using a sample special moment resisting frame and a sample eccentrically braced frame and three ground-motion scaling procedures, including Geometric-Mean, Modal-Pushover-Based, and Distribution Scaling procedures. The impact of the three scaling procedures on the distributions of structural responses is discussed.

    摘要 I Abstract II 致謝 III 目錄 IV 表索引 VII 圖索引 IX 第一章 緒論 1 1.1 研究動機 1 1.2 研究內容 2 第二章 美國新一代房屋結構耐震性能評估法 3 2.1 前言 3 2.2 三種耐震性能評估 5 2.2.1 A型:基於地震強度之性能評估 (intensity-based assessment) 5 2.2.2 B型:基於地震情境之性能評估 (scenario-based assessment) 5 2.2.3 C型:基於地震危害度之性能評估 (time-based assessment) 6 2.3 評估步驟 7 2.3.1 步驟一:準備欲評估房屋之基本資料 7 2.3.2 步驟二:決定地震強度參數之大小 8 2.3.3 步驟三:計算房屋之地震反應 11 2.3.4 步驟四:各構件之損壞評估 11 2.3.5 步驟五:計算性能指標 13 第三章 文獻回顧 17 3.1 方法一:幾何平均縮放方法(Geometric-Mean Scaling Method) 18 3.2 方法二:模態側推縮放方法(Modal-Pushover-Based Scaling) 19 3.2.1 研究背景 19 3.2.2 模態側推分析(Modal Pushover Analysis) 19 3.2.3 模態側推縮放方法( Modal-Pushover-Based Scaling) 25 3.3 方法三:基於分佈縮放方法(Distribution-Based Scaling Method) 28 第四章 縮放地震歷時對特殊抗彎矩構架之性能評估 31 4.1 特殊抗彎矩構架之數值模型設計 31 4.2 建立地震歷時資料 31 4.3 縮放地震歷時之震幅 31 4.3.1 幾何平均縮放方法(Geo-Mean Scaling) 32 4.3.2 模態側推縮放方法(MPS) 33 4.3.3 基於分佈縮放方法(D-Scaling) 36 4.4 縮放地震歷時之分析結果 37 4.4.1 層間位移分析結果 38 4.4.2 平均樓層加速度反應譜分析結果 38 4.4.3 樓層加速度分析結果 39 第五章 縮放地震歷時對偏心斜撐構架之性能評估 73 5.1 偏心斜撐構架之數值模型設計 73 5.2 縮放地震歷時之震幅 73 5.2.1 幾何平均縮放方法(Geo-Mean Scaling) 73 5.2.2 模態側推縮放方法(MPS) 74 5.2.3 基於分佈縮放方法(D-Scaling) 77 5.3 縮放地震歷時之分析結果 78 5.3.1層間位移分析結果 78 5.3.2樓層加速度分析結果 79 第六章 結論 105 參考文獻 107

    [1] Whittaker, A. S., Hamburger, R. O., and Huang, Y. N., “Building-specific seismic loss assessment,” Proceedings, 2007 AEES Conference, Australian Earthquake Engineering Society, Wollongong, NSW, Australia.
    [2] 黃尹男,「美國新一代房屋結構耐震性能評估法」,結構工程,第二十六卷,第四期,中華民國結構工程學會,第59-74頁 ,台北2011年。
    [3] Somerville, P., Smith, N., Punyamurthula, S., and Sun, J. “Development of ground motion time histories for phase 2 of the FEMA/SAC steel project,” Report SAC/BD-97/04m, SAC Joint Venture, Sacramento, CA.
    [4] Huang, Y. N., Whittaker, A. S., and Luco, N., “Performance Assessment of Conventional and Base-Isolated Nuclear Power Plants for Earthquake and Blast Loadings,” Technical Report MCEER-08-0019, Multidisciplinary Center for Earthquake Engineering Research, University at Buffalo. (2008)
    [5] Huang, Y. N., Whittaker, A. S., Luco, N., and Hamburger, R. O., “Scaling Earthquake Ground Motion for Performance-Based Assessment of Building,” Journal of Structural Engineering, ASCE, 137(3), pp.311-321. (2011)
    [6] Samanta, A., and Huang, Y. N., “Ground motion scaling for seismic performance assessment of high-rise buildings,” Earthquake Spectra, in review.
    [7] 曾至堅,「低矮型校舍耐震能力詳細評估方法之研究」,國立成功大學碩士論文 (2007)。
    [8] 陳政予,「側推分析於耐震能力分析研究」,國立台灣科技大學碩士論文 (2005)。
    [9] 高耿賢,「評估高樓耐震需求之新側推分析程序之研發」,逢甲大學碩士論文 (2004)。
    [10] Goel, R. K., and Chopra, A. K., “Evaluation of Modal and FEMA Pushover Analyses:SAC Buildings,” Earthquake Spectra, Earthquake Engineering Research Institute, 20(1), pp.225-254. (2004)
    [11] Chopra, A. K., “Modal Analysis of Linear Dynamic Systems Physical Interpretation,” Journal of Structural Engineering, ASCE, 122(5), pp.517-527. (1996)
    [12] Chopra, A. K., and Goel, R. K., “A Modal Pushover Analysis Procedure for Estimating Seismic Demands for buildings,” Earthquake Engineering and Structural Dynamics, 31(3), pp.561-582. (2002)
    [13] Kalkan, E., and Chopra, A. K., “Modal-Pushover-Based Ground-Motion Scaling procedure,” Journal of Structural Engineering, ASCE, 137(3), pp.298-310. (2011)
    [14] Kalkan, E., and Chopra, A. K., “Practical Guidelines to Select and Scale Earthquake Records for Nonlinear Response History Analysis of Structures,” Earthquake Engineering Research Institute, United States Geological Survey. (2010)
    [15] American Society of Civil Engineers (ASCE)., “Minimum design loads for buildings and other structures,” ASCE/SEI 7-05, ASCE, Reston, VA. (2006)
    [16] American Institute of Steel Construction (AISC)., “Seismic Provision for Structure Steel Buildings,” ANSI/AISE 341-05, AISE, Chicago Illinois. (2005)

    QR CODE