簡易檢索 / 詳目顯示

研究生: 林佑玹
Yu-Hsuan Lin
論文名稱: 以乳化法製備溫度及還原敏感性可溶解型明膠微球用於細胞脫貼附之性質研究
Preparation of thermal and redox sensitive gelatin microspheres by emulsion method for cell attachment and detachment study
指導教授: 楊銘乾
Ming-Chien Yang
蔡協致
Hsieh-Chih Tsai
口試委員: 楊銘乾
Ming-Chien Yang
蔡協致
Hsieh-Chih Tsai
林宣因
Suian-Yin Lin
陳玉暄
Yu-Shuan Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 126
中文關鍵詞: 溫度敏感型高分子乳化法感溫型微球可溶解型微球微載體培養
外文關鍵詞: thermo-sensitive block copolymers, water-in-oil (w/o) emulsions, thermosensitive microspheres, redox sensitive microspheres, microcarrier culture
相關次數: 點閱:194下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用微載體培養貼附性細胞已被證明是能實現擴增幹細胞及哺乳動物細胞重要方法之一,微載體脫附細胞時需考慮胰蛋白酶孵育時間,時間過長會造成細胞傷害及黏附力過強之細胞不易脫落等缺點。為了改善細胞於微載體之脫附率,本實驗開發 (1) 可溶解還原型微球、(2) 可溶解感溫還原型微球。已成功使用明膠通過油包水乳化法以雙硫鍵作為交聯劑造球,調整不同雙硫鍵濃度成功將明膠網絡穩定形成可溶解還原型明膠微球,並將NIPAM與烯丙基胺(Allylamine)以可逆加成-斷裂鏈轉移(RAFT)反應聚合溫敏性嵌段共聚物,結構中嵌入帶正電且親水的Allylamine。水接觸角顯示略微親水,利於細胞貼附增殖並提升最低臨界溶液溫度(LCST)為33.4 °C,趨近人體溫度37°C,適合細胞培養環境中應用。藉由化學法(設計及合成雙硒鍵表面交聯劑)及物理法塗層溫敏性共聚物修飾微球表面,形成可溶解型微球具有還原及溫度雙重敏感特性,感溫高分子改質於微球表面後,協助微球在37oC之穩定性,另外表面感溫共聚物改質後貼附率提升11%、脫附比例上升45.8%,細胞脫附時加入還原劑切斷雙硫鍵於30分鐘內成功瓦解,收回的細胞經檢測均為活細胞,初步證實可溶解還原型微球、可溶解感溫還原型微球具有助於細胞貼附擴增、傳遞活細胞並釋放之潛力。


    The use of microcarriers to culture adherent cells has been proven to be one of the important ways to amplify stem cells and mammalian cells number. When separating cells with microcarriers, it is necessary to consider the trypsin incubation time, which will cause cell damage and the cells with strong adhesion are not easy to fall off. In order to improve the detachment rate of cells on microcarriers, we developed (1) soluble microspheres and (2) soluble thermosensitive microspheres. In this study, gelatin had successfully formed microspheres through water-in-oil (w/o) emulsion method with disulfide bond as crosslinking agent. Adjusting the concentration of disulfide bonds stabilized the gelatin network to form soluble reduceable gelatin microspheres and polymerized with NIPAM and allylamine through reversible addition fragmentation chain transfer (RAFT) reaction to form thermosensitive block copolymers embedded with positively charged and hydrophilic allylamine. Water contact angle showed slightly hydrophilic, making this microsphere suitable for cell adhesion and proliferation. The lower critical solution temperature (LCST) was raised to 33.4℃ close to the human body temperature 37℃, which is suitable for cell culture applications. By using chemical method (design and synthesis of diselenide bond surface crosslinker) and physical method to coat thermosensitive copolymer onto the surface of the microspheres, the soluble microspheres exhibited dual sensitivity to reducing agent and temperature. The thermosensitive polymers on the surface of the microspheres improved the stability of the microspheres at 37℃. In addition, the attachment rate increased by 11% and the detachment rate increased by 45.8% after the surface modification. Furthermore, the disulfide bond was cleaved by reducing agent when cell separation within 30 min and the recovered cells were all alive. The potential of soluble, thermosensitive and reduceable microspheres for cell attachment, proliferation, delivery and release of living cells was preliminarily confirmed.

    致謝 I 摘要 II ABSTRACT III 目錄 V 圖目錄 IX 表目錄 XV 第一章 前言 1 第二章 文獻回顧 3 2-1 微載體擴增細胞技術之應用 3 2-1-1 幹細胞治療 3 2-1-2 組織再生 4 2-1-3 疫苗培育 5 2-1-4 生產人造肉 6 2-2 微載體 8 2-2-1 微載體定義 8 2-2-2 降解型微載體 10 2-2-3 微球製備方法 11 2-2-4 乳化技術 11 2-2-5 界面活性劑 12 2-2-6 親水親油平衡值 13 2-3 明膠 13 2-3-1 明膠簡介 13 2-3-2 交聯劑方法 15 2-3-3 雙硒鍵、雙硫鍵氧化型交聯劑 16 2-4 微載體培養 17 2-4-1 細胞貼附基本要求 17 2-4-2 三維細胞培養 18 2-5 細胞脫附機制 20 2-5-1 酶解法脫附 20 2-5-2 非酶解脫附 20 2-6 環境應答型高分子 21 2-6-1 刺激響應性材料 21 2-6-2 溫度敏感型高分子Poly(N-isopropylacrylamide) (PNIPAM) 22 2-6-3 臨界溶液溫度 23 2-6-4 親水單體Allylamine(ALA) 24 2-6-5 共聚物 25 2-6-6 可逆加成-斷裂鏈轉移聚合 26 2-7 溫度響應之細胞吸附脫附 27 2-7-1 溫度響應二維基板 27 2-7-2 溫度響應微載體 29 2-8 實驗動機 30 第三章 實驗方法 32 3-1 實驗流程 32 3-2 實驗藥品 33 3-3 實驗設備 36 3-4 實驗分析儀器 37 3-5 實驗步驟 39 3-5-1 明膠微球(Gms)、還原型明膠微球(Gms-DTSP) 39 3-5-2 感溫型明膠微球(Gms-pnipam) 感溫還原型微球(Gms -DTSP- pnipam) 39 3-5-3 還原感溫型明膠微球 (Gms-DTSP-Se-pnipam) 41 3-6 結構鑑定與性質分析 43 3-6-1 微球粒徑量測 43 3-6-2 微球膨脹率測試 43 3-6-3 分子量量測鑑定 43 3-6-4 NMR鑑定與組成元素 44 3-6-5 最低臨界溶液溫度LCST量測 44 3-6-6 水接觸角WCA測試 44 3-7 細胞實驗 44 3-7-1 微球之細胞存活率 44 3-7-2 溫敏性嵌段共聚物細胞脫貼附測試 45 3-7-3 微球細胞脫貼附測試 46 3-7-4 微球之細胞貼附率 46 3-7-5 脫附細胞死活細胞檢測 46 第四章 結果與討論 47 4-1 溫敏性嵌段共聚物合成 47 4-1-1 1H-NMR鑑定與組成元素 47 4-1-2 分子量量測鑑定 49 4-1-3 最低臨界溶液溫度LCST量測 50 4-1-4 水接觸角測試 51 4-2 雙硒鍵交聯劑 53 4-2-1 1H-NMR鑑定與組成元素 53 4-2-2 拉曼光譜儀Raman Spectrometer分析 55 4-2-3 傅立葉轉換紅外線光譜FT-IR分析 55 4-3 明膠微球鑑定 56 4-3-1 拉曼光譜儀Raman Spectrometer分析 57 4-3-2 傅立葉轉換紅外線光譜FTIR分析 58 4-3-3 掃描電子顯微鏡SEM分析 61 4-3-4 膨潤狀態粒徑分析 65 4-3-5 微球膨脹度測試 70 4-3-6 溶解型微球瓦解行為 71 4-4 細胞存活率 73 4-4-1 敏感性嵌段共聚物 73 4-4-2 明膠微球 75 4-5 細胞貼附脫附之測試 76 4-5-1 溫度敏感性嵌段共聚物細胞脫貼附測試 76 4-5-2 感溫型明膠微球之溫度誘導脫附行為 81 4-5-3 明膠微球細胞之脫貼附測試 83 4-5-4 明膠微球之細胞貼附率及脫附行為 87 4-5-5 還原型明膠微球之脫貼附測試 88 4-5-6 還原型明膠微球之細胞貼附率及脫附行為 92 4-5-7 收穫細胞之回養測試 93 第五章 結論 94 第六章 參考文獻 96

    1. S. Derakhti, S.H. Safiabadi-Tali, G. Amoabediny, and M. Sheikhpour, Attachment and detachment strategies in microcarrier-based cell culture technology: A comprehensive review. Mater Sci Eng C Mater Biol Appl, 2019. 103: p. 109782.
    2. O.W. Merten, Advances in cell culture: anchorage dependence. Philos Trans R Soc Lond B Biol Sci, 2015. 370(1661): p. 20140040.
    3. D.M. Berrie, R.C. Waters, C. Montoya, A. Chatel, and E.M. Vela, Development of a high-yield live-virus vaccine production platform using a novel fixed-bed bioreactor. Vaccine, 2020. 38(20): p. 3639-3645.
    4. A. Lennaertz, S. Knowles, J.-C. Drugmand, and J. Castillo, Viral vector production in the integrity® iCELLis® single-use fixed-bed bioreactor, from bench-scale to industrial scale. BMC Proceedings, 2013. 7(S6).
    5. L.Y. Sun, S.Z. Lin, Y.S. Li, H.J. Harn, and T.W. Chiou, Functional cells cultured on microcarriers for use in regenerative medicine research. Cell Transplant, 2011. 20(1): p. 49-62.
    6. Y. Yuan, M.S. Kallos, C. Hunter, and A. Sen, Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture. J Tissue Eng Regen Med, 2014. 8(3): p. 210-25.
    7. J. Malda and C.G. Frondoza, Microcarriers in the engineering of cartilage and bone. Trends Biotechnol, 2006. 24(7): p. 299-304.
    8. M. Mimeault, R. Hauke, and S.K. Batra, Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther, 2007. 82(3): p. 252-64.
    9. A.K. Chen, S. Reuveny, and S.K. Oh, Application of human mesenchymal and pluripotent stem cell microcarrier cultures in cellular therapy: achievements and future direction. Biotechnol Adv, 2013. 31(7): p. 1032-46.
    10. A.M. de Soure, A. Fernandes-Platzgummer, C.L. da Silva, and J.M. Cabral, Scalable microcarrier-based manufacturing of mesenchymal stem/stromal cells. J Biotechnol, 2016. 236: p. 88-109.
    11. A. Trounson and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
    12. A. Bongso and M. Richards, History and perspective of stem cell research. Best Pract Res Clin Obstet Gynaecol, 2004. 18(6): p. 827-42.
    13. G. Kolios and Y. Moodley, Introduction to stem cells and regenerative medicine. Respiration, 2013. 85(1): p. 3-10.
    14. D. Ilic and C. Ogilvie, Concise Review: Human Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going? Stem Cells, 2017. 35(1): p. 17-25.
    15. J.A. Thomson, J. Itskovitz-Eldor, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall, and J.M. Jones, Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
    16. H. Bouabe and K. Okkenhaug, Gene targeting in mice: a review. Methods Mol Biol, 2013. 1064: p. 315-36.
    17. A. Trounson, R.G. Thakar, G. Lomax, and D. Gibbons, Clinical trials for stem cell therapies. BMC Med, 2011. 9: p. 52.
    18. M. Hassan, M.D. Yazid, M.H.M. Yunus, S.R. Chowdhury, Y. Lokanathan, R.B.H. Idrus, A.M.H. Ng, and J.X. Law, Large-Scale Expansion of Human Mesenchymal Stem Cells. Stem Cells Int, 2020. 2020: p. 9529465.
    19. N.E. Ryu, S.H. Lee, and H. Park, Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells, 2019. 8(12).
    20. B. Koh, N. Sulaiman, M.B. Fauzi, J.X. Law, M.H. Ng, R.B.H. Idrus, and M.D. Yazid, Three dimensional microcarrier system in mesenchymal stem cell culture: a systematic review. Cell Biosci, 2020. 10: p. 75.
    21. K. Braeckmans, S.C. De Smedt, M. Leblans, R. Pauwels, and J. Demeester, Encoding microcarriers: present and future technologies. Nat Rev Drug Discov, 2002. 1(6): p. 447-56.
    22. H. Tavassoli, S.N. Alhosseini, A. Tay, P.P.Y. Chan, S.K. Weng Oh, and M.E. Warkiani, Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials, 2018. 181: p. 333-346.
    23. Y. Martin, M. Eldardiri, D.J. Lawrence-Watt, and J.R. Sharpe, Microcarriers and their potential in tissue regeneration. Tissue Eng Part B Rev, 2011. 17(1): p. 71-80.
    24. T.S. Shim, S.-H. Kim, and S.-M. Yang, Elaborate Design Strategies Toward Novel Microcarriers for Controlled Encapsulation and Release. Particle & Particle Systems Characterization, 2013. 30(1): p. 9-45.
    25. Z. Zhang, T.W. Eyster, and P.X. Ma, Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond), 2016. 11(12): p. 1611-28.
    26. H.J. Chung, I.K. Kim, T.G. Kim, and T.G. Park, Highly open porous biodegradable microcarriers: in vitro cultivation of chondrocytes for injectable delivery. Tissue Eng Part A, 2008. 14(5): p. 607-15.
    27. Y. Genzel and U. Reichl, Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines, 2009. 8(12): p. 1681-92.
    28. C.R. Gaush, W.L. Hard, and T.F. Smith, Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med, 1966. 122(3): p. 931-5.
    29. S.H. Madin and N.B. Darby, Jr., Established kidney cell lines of normal adult bovine and ovine origin. Proc Soc Exp Biol Med, 1958. 98(3): p. 574-6.
    30. K. Nilsson, Microcarrier Cell Culture. Biotechnology and Genetic Engineering Reviews, 1988. 6(1): p. 404-439.
    31. S. Rourou, A. van der Ark, T. van der Velden, and H. Kallel, A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions. Vaccine, 2007. 25(19): p. 3879-89.
    32. B.J. Montagnon, B. Fanget, and J.C. Vincent-Falquet, Industrial-scale production of inactivated poliovirus vaccine prepared by culture of Vero cells on microcarrier. Rev Infect Dis, 1984. 6 Suppl 2: p. S341-4.
    33. Y. Genzel, I. Behrendt, S. Konig, H. Sann, and U. Reichl, Metabolism of MDCK cells during cell growth and influenza virus production in large-scale microcarrier culture. Vaccine, 2004. 22(17-18): p. 2202-8.
    34. J.A. Tree, C. Richardson, A.R. Fooks, J.C. Clegg, and D. Looby, Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001. 19(25-26): p. 3444-50.
    35. Y. Genzel, C. Dietzsch, E. Rapp, J. Schwarzer, and U. Reichl, MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl Microbiol Biotechnol, 2010. 88(2): p. 461-75.
    36. F. Aubrit, F. Perugi, A. Leon, F. Guehenneux, P. Champion-Arnaud, M. Lahmar, and K. Schwamborn, Cell substrates for the production of viral vaccines. Vaccine, 2015. 33(44): p. 5905-12.
    37. M.J. Post, Cultured beef: medical technology to produce food. J Sci Food Agric, 2014. 94(6): p. 1039-41.
    38. G. Zhang, X. Zhao, X. Li, G. Du, J. Zhou, and J. Chen, Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology, 2020. 97: p. 443-450.
    39. S. Sart and S.N. Agathos, Large-Scale Expansion and Differentiation of Mesenchymal Stem Cells in Microcarrier-Based Stirred Bioreactors. Methods Mol Biol, 2016. 1502: p. 87-102.
    40. J. Varani, M. Dame, T.F. Beals, and J.A. Wass, Growth of three established cell lines on glass microcarriers. Biotechnol Bioeng, 1983. 25(5): p. 1359-72.
    41. J.M. Goddard and J.H. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007. 32(7): p. 698-725.
    42. M.C. Moran, G. Ruano, F. Cirisano, and M. Ferrari, Mammalian cell viability on hydrophobic and superhydrophobic fabrics. Mater Sci Eng C Mater Biol Appl, 2019. 99: p. 241-247.
    43. A.L. Rodrigues, C.A.V. Rodrigues, A.R. Gomes, S.F. Vieira, S.M. Badenes, M.M. Diogo, and J.M.S. Cabral, Dissolvable Microcarriers Allow Scalable Expansion And Harvesting Of Human Induced Pluripotent Stem Cells Under Xeno-Free Conditions. Biotechnol J, 2019. 14(4): p. e1800461.
    44. E. Almeida, I.C. Bellettini, F.P. Garcia, M.T. Farinacio, C.V. Nakamura, A.F. Rubira, A.F. Martins, and E.C. Muniz, Curcumin-loaded dual pH- and thermo-responsive magnetic microcarriers based on pectin maleate for drug delivery. Carbohydr Polym, 2017. 171: p. 259-266.
    45. H. Zhou and H.H. Xu, The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering. Biomaterials, 2011. 32(30): p. 7503-13.
    46. F.Y. Ushikubo and R.L. Cunha, Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocolloids, 2014. 34: p. 145-153.
    47. R. Jenjob, T. Phakkeeree, F. Seidi, M. Theerasilp, and D. Crespy, Emulsion Techniques for the Production of Pharmacological Nanoparticles. Macromol Biosci, 2019. 19(6): p. e1900063.
    48. J. Gómez-Estaca, R. Gavara, and P. Hernández-Muñoz, Encapsulation of curcumin in electrosprayed gelatin microspheres enhances its bioaccessibility and widens its uses in food applications. Innovative Food Science & Emerging Technologies, 2015. 29: p. 302-307.
    49. N. Bock, M.A. Woodruff, D.W. Hutmacher, and T.R. Dargaville, Electrospraying, a Reproducible Method for Production of Polymeric Microspheres for Biomedical Applications. Polymers, 2011. 3(1): p. 131-149.
    50. Q. Xu, M. Hashimoto, T.T. Dang, T. Hoare, D.S. Kohane, G.M. Whitesides, R. Langer, and D.G. Anderson, Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small, 2009. 5(13): p. 1575-81.
    51. K.C. Cheng, Z.S. Khoo, N.W. Lo, W.J. Tan, and N.G. Chemmangattuvalappil, Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants. Heliyon, 2020. 6(5): p. e03861.
    52. A.O. Elzoghby, Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release, 2013. 172(3): p. 1075-91.
    53. L. Yao, F. Phan, and Y. Li, Collagen microsphere serving as a cell carrier supports oligodendrocyte progenitor cell growth and differentiation for neurite myelination in vitro. Stem Cell Res Ther, 2013. 4(5): p. 109.
    54. N. Contessi Negrini, M.V. Lipreri, M.C. Tanzi, and S. Fare, In vitro cell delivery by gelatin microspheres prepared in water-in-oil emulsion. J Mater Sci Mater Med, 2020. 31(3): p. 26.
    55. L. Draghi, D. Brunelli, S. Fare, and M.C. Tanzi, Programmed cell delivery from biodegradable microcapsules for tissue repair. J Biomater Sci Polym Ed, 2015. 26(15): p. 1002-12.
    56. N.B. Skop, F. Calderon, S.W. Levison, C.D. Gandhi, and C.H. Cho, Heparin crosslinked chitosan microspheres for the delivery of neural stem cells and growth factors for central nervous system repair. Acta Biomater, 2013. 9(6): p. 6834-43.
    57. C. Fan, S.H. Zhan, Z.X. Dong, W. Yang, W.S. Deng, X. Liu, D.A. Wang, and P. Sun, Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Mater Sci Eng C Mater Biol Appl, 2020. 108: p. 110399.
    58. N. Nitta, S. Ohta, T. Tanaka, R. Takazakura, T. Toyama, A. Sonoda, A. Seko, A. Furukawa, M. Takahashi, K. Murata, Y. Kurumi, T. Tani, T. Sakamoto, and Y. Tabata, An initial clinical study on the efficacy of cisplatin-releasing gelatin microspheres for metastatic liver tumors. Eur J Radiol, 2009. 71(3): p. 519-26.
    59. Y. Tabata, A. Nagano, and Y. Ikada, Biodegradation of hydrogel carrier incorporating fibroblast growth factor. Tissue Eng, 1999. 5(2): p. 127-38.
    60. M.C. Echave, P. Sánchez, J.L. Pedraz, and G. Orive, Progress of gelatin-based 3D approaches for bone regeneration. Journal of Drug Delivery Science and Technology, 2017. 42: p. 63-74.
    61. Y. Tabata, Tissue regeneration based on growth factor release. Tissue Eng, 2003. 9 Suppl 1: p. S5-15.
    62. M. Zembyla, B.S. Murray, and A. Sarkar, Water-in-oil emulsions stabilized by surfactants, biopolymers and/or particles: a review. Trends in Food Science & Technology, 2020. 104: p. 49-59.
    63. R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, and A. Pendashteh, Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Separation and Purification Technology, 2016. 170: p. 377-407.
    64. S.M. Abed, N.H. Abdurahman, R.M. Yunus, H.A. Abdulbari, and S. Akbari, Oil emulsions and the different recent demulsification techniques in the petroleum industry - A review. IOP Conference Series: Materials Science and Engineering, 2019. 702.
    65. A.I.A. Mohamed, A.S. Sultan, I.A. Hussein, and G.A. Al-Muntasheri, Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions. Journal of Chemistry, 2017. 2017: p. 1-11.
    66. S. Zheng, S. Huang, L. Xiong, W. Yang, Z. Liu, B. Xie, and M. Yang, Tunable wrinkle structure formed on surface of polydimethylsiloxane microspheres. European Polymer Journal, 2018. 104: p. 99-105.
    67. J.F. Ontiveros, C. Pierlot, M. Catté, V. Molinier, J.-L. Salager, and J.-M. Aubry, A simple method to assess the hydrophilic lipophilic balance of food and cosmetic surfactants using the phase inversion temperature of C10E4/n-octane/water emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 458: p. 32-39.
    68. X. Guo, Z. Rong, and X. Ying, Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method. J Colloid Interface Sci, 2006. 298(1): p. 441-50.
    69. K. Su and C. Wang, Recent advances in the use of gelatin in biomedical research. Biotechnol Lett, 2015. 37(11): p. 2139-45.
    70. C.E. Campiglio, N. Contessi Negrini, S. Fare, and L. Draghi, Cross-Linking Strategies for Electrospun Gelatin Scaffolds. Materials (Basel), 2019. 12(15).
    71. J. Ratanavaraporn, R. Rangkupan, H. Jeeratawatchai, S. Kanokpanont, and S. Damrongsakkul, Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. Int J Biol Macromol, 2010. 47(4): p. 431-8.
    72. S.F. Chou, L.J. Luo, J.Y. Lai, and D.H. Ma, Role of solvent-mediated carbodiimide cross-linking in fabrication of electrospun gelatin nanofibrous membranes as ophthalmic biomaterials. Mater Sci Eng C Mater Biol Appl, 2017. 71: p. 1145-1155.
    73. N. Ninan, Y. Grohens, A. Elain, N. Kalarikkal, and S. Thomas, Synthesis and characterisation of gelatin/zeolite porous scaffold. European Polymer Journal, 2013. 49(9): p. 2433-2445.
    74. S.A. Poursamar, A.N. Lehner, M. Azami, S. Ebrahimi-Barough, A. Samadikuchaksaraei, and A.P. Antunes, The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C Mater Biol Appl, 2016. 63: p. 1-9.
    75. H.Y. Fan, D. Duquette, M.J. Dumont, and B.K. Simpson, Salmon skin gelatin-corn zein composite films produced via crosslinking with glutaraldehyde: Optimization using response surface methodology and characterization. Int J Biol Macromol, 2018. 120(Pt A): p. 263-273.
    76. N. Contessi Negrini, M. Bonnetier, G. Giatsidis, D.P. Orgill, S. Fare, and B. Marelli, Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. Acta Biomater, 2019. 87: p. 61-75.
    77. K. Subramanian and V. Vijayakumar, Evaluation of isophorone diisocyanate crosslinked gelatin as a carrier for controlled delivery of drugs. Polymer Bulletin, 2012. 70(3): p. 733-753.
    78. D.M. Kirchmajer, C.A. Watson, M. Ranson, and M.i.h. Panhuis, Gelapin, a degradable genipin cross-linked gelatin hydrogel. RSC Adv., 2013. 3(4): p. 1073-1081.
    79. B. Manickam, R. Sreedharan, and M. Elumalai, 'Genipin' - the natural water soluble cross-linking agent and its importance in the modified drug delivery systems: an overview. Curr Drug Deliv, 2014. 11(1): p. 139-45.
    80. B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun, H. Yu, Q. Chen, W. Yang, M. Wang, S. Zuo, P. Chen, Q. Kan, H. Zhang, Y. Wang, Z. He, and J. Sun, Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat Commun, 2019. 10(1): p. 3211.
    81. A.N. Chatterjee, Q. Yu, J.S. Moore, and N.R. Aluru, Mathematical Modeling and Simulation of Dissolvable Hydrogels. Journal of Aerospace Engineering, 2003. 16(2): p. 55-64.
    82. X. Li, Y. Gao, and M.J. Serpe, Reductant-responsive poly(N-isopropylacrylamide) microgels and microgel-based optical materials. Canadian Journal of Chemistry, 2015. 93(7): p. 685-689.
    83. S.M. Frisch and R.A. Screaton, Anoikis mechanisms. Curr Opin Cell Biol, 2001. 13(5): p. 555-62.
    84. A.E. Aplin, A.K. Howe, and R.L. Juliano, Cell adhesion molecules, signal transduction and cell growth. Curr Opin Cell Biol, 1999. 11(6): p. 737-44.
    85. F. Grinnell, Cellular Adhesiveness and Extracellular Substrata. 1978. p. 65-144.
    86. C. McKee and G.R. Chaudhry, Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces, 2017. 159: p. 62-77.
    87. D. Egger, C. Tripisciano, V. Weber, M. Dominici, and C. Kasper, Dynamic Cultivation of Mesenchymal Stem Cell Aggregates. Bioengineering (Basel), 2018. 5(2).
    88. A.W. Nienow, Q.A. Rafiq, K. Coopman, and C.J. Hewitt, A potentially scalable method for the harvesting of hMSCs from microcarriers. Biochemical Engineering Journal, 2014. 85: p. 79-88.
    89. A.L. van Wezel, Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. Nature, 1967. 216(5110): p. 64-5.
    90. F.F. dos Santos, P.Z. Andrade, C.L. da Silva, and J.M. Cabral, Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J, 2013. 8(6): p. 644-54.
    91. A. Kikuchi, M. Okuhara, F. Karikusa, Y. Sakurai, and T. Okano, Two-dimensional manipulation of confluently cultured vascular endothelial cells using temperature-responsive poly(N-isopropylacrylamide)-grafted surfaces. J Biomater Sci Polym Ed, 1998. 9(12): p. 1331-48.
    92. H. Takahashi, M. Nakayama, M. Yamato, and T. Okano, Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules, 2010. 11(8): p. 1991-9.
    93. A. Higuchi, N. Aoki, T. Yamamoto, T. Miyazaki, H. Fukushima, T.M. Tak, S. Jyujyoji, S. Egashira, Y. Matsuoka, and S.H. Natori, Temperature-induced cell detachment on immobilized pluronic surface. J Biomed Mater Res A, 2006. 79(2): p. 380-92.
    94. C.H. Chen, C.C. Tsai, W. Chen, F.L. Mi, H.F. Liang, S.C. Chen, and H.W. Sung, Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels. Biomacromolecules, 2006. 7(3): p. 736-43.
    95. I.E. Hannachi, M. Yamato, and T. Okano, Cell sheet technology and cell patterning for biofabrication. Biofabrication, 2009. 1(2): p. 022002.
    96. E.T. Baldwin and L.A. Wells, Stimuli-Responsive Polymers, in Functional Biopolymers. 2019. p. 103-126.
    97. B.A. Badeau and C.A. DeForest, Programming Stimuli-Responsive Behavior into Biomaterials. Annu Rev Biomed Eng, 2019. 21: p. 241-265.
    98. H.W. Ooi, S. Hafeez, C.A. van Blitterswijk, L. Moroni, and M.B. Baker, Hydrogels that listen to cells: a review of cell-responsive strategies in biomaterial design for tissue regeneration. Mater. Horiz., 2017. 4(6): p. 1020-1040.
    99. L. Shen, Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater, 2011. 2(4): p. 355-72.
    100. M. Huo, J. Yuan, L. Tao, and Y. Wei, Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014. 5(5): p. 1519-1528.
    101. D. Roy, W.L. Brooks, and B.S. Sumerlin, New directions in thermoresponsive polymers. Chem Soc Rev, 2013. 42(17): p. 7214-43.
    102. J. Ramos, A. Imaz, and J. Forcada, Temperature-sensitive nanogels: poly(N-vinylcaprolactam) versus poly(N-isopropylacrylamide). Polym. Chem., 2012. 3(4): p. 852-856.
    103. S. Lanzalaco and E. Armelin, Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels, 2017. 3(4).
    104. M.I. Gibson and R.K. O'Reilly, To aggregate, or not to aggregate? considerations in the design and application of polymeric thermally-responsive nanoparticles. Chem Soc Rev, 2013. 42(17): p. 7204-13.
    105. L. Altomare, L. Bonetti, C.E. Campiglio, L. De Nardo, L. Draghi, F. Tana, and S. Fare, Biopolymer-based strategies in the design of smart medical devices and artificial organs. Int J Artif Organs, 2018. 41(6): p. 337-359.
    106. N. Raval, D. Kalyane, R. Maheshwari, and R.K. Tekade, Copolymers and Block Copolymers in Drug Delivery and Therapy, in Basic Fundamentals of Drug Delivery. 2019. p. 173-201.
    107. J. Krstina, G. Moad, E. Rizzardo, C.L. Winzor, C.T. Berge, and M. Fryd, Narrow Polydispersity Block Copolymers by Free-Radical Polymerization in the Presence of Macromonomers. Macromolecules, 2002. 28(15): p. 5381-5385.
    108. J. Chiefari, Y.K. Chong, F. Ercole, J. Krstina, J. Jeffery, T.P.T. Le, R.T.A. Mayadunne, G.F. Meijs, C.L. Moad, G. Moad, E. Rizzardo, and S.H. Thang, Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 1998. 31(16): p. 5559-5562.
    109. M. Semsarilar and S. Perrier, 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nat Chem, 2010. 2(10): p. 811-20.
    110. R. Barbey, L. Lavanant, D. Paripovic, N. Schuwer, C. Sugnaux, S. Tugulu, and H.A. Klok, Polymer brushes via surface-initiated controlled radical polymerization: synthesis, characterization, properties, and applications. Chem Rev, 2009. 109(11): p. 5437-527.
    111. F. Audouin and A. Heise, Surface-initiated RAFT polymerization of NIPAM from monolithic macroporous polyHIPE. European Polymer Journal, 2013. 49(5): p. 1073-1079.
    112. Y. Tsuda, A. Kikuchi, M. Yamato, A. Nakao, Y. Sakurai, M. Umezu, and T. Okano, The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials, 2005. 26(14): p. 1885-93.
    113. J. Ran, L. Wu, Z. Zhang, and T. Xu, Atom transfer radical polymerization (ATRP): A versatile and forceful tool for functional membranes. Progress in Polymer Science, 2014. 39(1): p. 124-144.
    114. N. Ayres, C.D. Cyrus, and W.J. Brittain, Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir, 2007. 23(7): p. 3744-9.
    115. M. Husseman, E.E. Malmström, M. McNamara, M. Mate, D. Mecerreyes, D.G. Benoit, J.L. Hedrick, P. Mansky, E. Huang, T.P. Russell, and C.J. Hawker, Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques. Macromolecules, 1999. 32(5): p. 1424-1431.
    116. Y.S. Ramírez-Fuentes, E. Bucio, and G. Burillo, Radiation-induced grafting of N-isopropylacrylamide and acrylic acid onto polypropylene films by two step method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007. 265(1): p. 183-186.
    117. N.A. Dzhoyashvili, K. Thompson, A.V. Gorelov, and Y.A. Rochev, Film Thickness Determines Cell Growth and Cell Sheet Detachment from Spin-Coated Poly(N-Isopropylacrylamide) Substrates. ACS Appl Mater Interfaces, 2016. 8(41): p. 27564-27572.
    118. N.G. Patel, J.P. Cavicchia, G. Zhang, and B.M. Zhang Newby, Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomater, 2012. 8(7): p. 2559-67.
    119. K. Nishida, M. Yamato, Y. Hayashida, K. Watanabe, K. Yamamoto, E. Adachi, S. Nagai, A. Kikuchi, N. Maeda, H. Watanabe, T. Okano, and Y. Tano, Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med, 2004. 351(12): p. 1187-96.
    120. H. Kim, Y. Kim, J. Park, N.S. Hwang, Y.K. Lee, and Y. Hwang, Recent Advances in Engineered Stem Cell-Derived Cell Sheets for Tissue Regeneration. Polymers (Basel), 2019. 11(2).
    121. A. Mizutani, A. Kikuchi, M. Yamato, H. Kanazawa, and T. Okano, Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials, 2008. 29(13): p. 2073-81.
    122. K. Nagase, M. Watanabe, A. Kikuchi, M. Yamato, and T. Okano, Thermo-responsive polymer brushes as intelligent biointerfaces: preparation via ATRP and characterization. Macromol Biosci, 2011. 11(3): p. 400-9.
    123. K. Fukumori, Y. Akiyama, M. Yamato, J. Kobayashi, K. Sakai, and T. Okano, Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater, 2009. 5(1): p. 470-6.
    124. F.J. Xu, S.P. Zhong, L.Y. Yung, E.T. Kang, and K.G. Neoh, Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion. Biomacromolecules, 2004. 5(6): p. 2392-403.
    125. Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir, 2004. 20(13): p. 5506-11.
    126. M.H. Kim, J.C. Kim, H.Y. Lee, J.D. Kim, and J.H. Yang, Release property of temperature-sensitive alginate beads containing poly(N-isopropylacrylamide). Colloids Surf B Biointerfaces, 2005. 46(1): p. 57-61.
    127. H.S. Yang, O. Jeon, S.H. Bhang, S.H. Lee, and B.S. Kim, Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant, 2010. 19(9): p. 1123-32.
    128. A. Tamura, J. Kobayashi, M. Yamato, and T. Okano, Thermally responsive microcarriers with optimal poly(N-isopropylacrylamide) grafted density for facilitating cell adhesion/detachment in suspension culture. Acta Biomater, 2012. 8(11): p. 3904-13.
    129. M. Siu, H.Y. Liu, X.X. Zhu, and C. Wu, Formation of Mesoglobular Phase of Amphiphilic Copolymer Chains in Dilute Solution: Effect of Comonomer Composition. Macromolecules, 2003. 36(6): p. 2103-2107.
    130. C. Decamps and J. De Coninck, Dynamics of Spontaneous Spreading under Electrowetting Conditions. Langmuir, 2000. 16(26): p. 10150-10153.
    131. A. Soleimani-Gorgani, Inkjet Printing, in Printing on Polymers. 2016. p. 231-246.
    132. R. Dubey, H. Lee, D.-H. Nam, and D. Lim, Mild generation of selenolate nucleophiles by thiol reduction of diselenides: convenient syntheses of selenyl-substituted aryl aldehydes. Tetrahedron Letters, 2011. 52(50): p. 6839-6842.
    133. S. Kim, Y. Kang, C.A. Krueger, M. Sen, J.B. Holcomb, D. Chen, J.C. Wenke, and Y. Yang, Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater, 2012. 8(5): p. 1768-77.
    134. J. Zhang, Z. Cui, R. Field, M.G. Moloney, S. Rimmer, and H. Ye, Thermo-responsive microcarriers based on poly(N-isopropylacrylamide). European Polymer Journal, 2015. 67: p. 346-364.
    135. J.V. Olsen, S.E. Ong, and M. Mann, Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics, 2004. 3(6): p. 608-14.
    136. S.N. Mthembu, A. Sharma, F. Albericio, and B.G. de la Torre, Breaking a Couple: Disulfide Reducing Agents. Chembiochem, 2020. 21(14): p. 1947-1954.

    無法下載圖示 全文公開日期 2031/08/19 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE