簡易檢索 / 詳目顯示

研究生: 王仁壑
Jen-huo Wang
論文名稱: 透過鹼水解及次臨界水分離萃取蔗渣
Fractionation of Sugarcane Bagasse during Alkali and Subcritical Water Treatments
指導教授: 朱義旭
Yi-hsu Ju
口試委員: 陳秀美
Hsiu-mei Chen
范陽
Ahmed Eid Fazary
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 82
中文關鍵詞: 蔗渣鹼水解次臨界分離萃取
外文關鍵詞: Sugarcane bagasse, Alkaline, Subcritical, fractionation
相關次數: 點閱:194下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究用鹼水解及次臨界流體萃取的方式將台灣蔗渣成分分離。蔗渣的鹼水解係利用濃度0、1、2 或4 M 的氫氧化鈉溶液,在120 °C 下進行;而次臨界流體萃取則是控制反應溫度於120、140、160 或180 °C,並設定反應起始壓力於13 bar。本研究探討鹼水解及次臨界流體萃取對蔗渣溶解度的影響,並探討在兩種反應中不同條件下萃取出的酚酸(對香豆酸、阿魏酸、香草醛、丁香酸、甲糠醛、對羥基苯甲酸)及中性糖(木糖、葡萄糖、阿拉伯糖、半乳糖、甘露糖、鼠李糖、糖醛酸)之含量,以及過濾後剩下固態成分之化學組成(水份含量、元素分析),並利用傅立葉轉換紅外線光譜分析儀及核磁共振儀探討固態之結構。此外,本研究並使用熱重/熱示差分析儀做蔗渣經鹼水解及次臨界水萃取後固態成份的熱分析。


    A set of experimental trials intended to fractionate Taiwanese sugarcane bagasse during alkaline and subcritical water treatments. The alkaline treatments of sugarcane bagasse were done at 120 °C using 0, 1, 2 and 4 M sodium hydroxide. While, the subcritical water treatments were done in a reactor at 120, 140, 160 and 180 °C and 13 bar. Following a study on the effects of both alkali and subcritical water treatments on the solublization rate of sugarcane bagasse is carried out. The soluble phenolic acids (p-coumaric acid, ferulic acid, vanillin, syringic acid, 5-hydroxymethyl-furfural, and p-hydroxybenzoic acid) and neutral sugar (d-xylose, d-glucose, l-arabinose, galactose, mannose, rhamnose and uronic acid) contents of different liquid fractions resulted from both alkali and subcritical treatment of the sugarcane bagasse were determined and discussed. Also, the chemical compositions (moisture content and elemental analysis) and structural elucidation (FT-IR, 1H-NMR, and 13C-NMR spectral data) of different solid fractions of alkali and subcritical treated bagasse are analyzed and explained. Moreover, thermal analysis of different solid fractions resulted from the alkaline and subcritical treatments of sugarcane bagasse were investigated using thermogravimetric analysis (TGA), and differential thermal analysis (DTA) techniques.

    Chinese Abstract I English Abstract II Acknowledgements III Contents IV List of Figures VII List of Tables X Chapter 1 Introduction 1 1.1 Background of this study 1 1.1.1 Sugarcane 1 1.1.2 Sugarcane bagasse 2 1.1.3 Cellulose 5 1.1.4 Hemicellulose 6 1.1.5 Lignin 7 1.1.6 Phenolic compounds 8 1.2 Objective of this study 10 Chapter 2 Review of Relevant Literature 11 2.1 Alkaline hydrolysis 11 2.2 Acid hydrolysis and enzymatic hydrolysis 12 2.3 Subcritical water extraction 14 Chapter 3 Methodology 18 3.1 Materials 18 3.1.1 Pretreatment of sugarcane bagasse 18 3.1.2 Chemicals 18 3.2 Alkaline hydrolysis 18 3.3 Subcritical water extraction of sugarcane bagasse 20 3.3.1 Apparatus 20 3.3.2 Subcritical water extraction 21 3.4 Solublization rate of sugarcane bagasse 23 3.5 Liquid fraction analysis 23 3.6 Solid fraction analysis 24 3.6.1 Moisture Content 24 3.6.2 Thermal analysis 24 3.6.3 Structural analysis 25 3.6.3.1 Elemental analysis 25 3.6.3.2 FT-IR analysis 25 3.6.3.3 NMR analysis 25 3.7 Statistical Analysis 25 Chapter 4 Results and Discussion 27 4.1 Fractionation of Taiwanese sugarcane bagasse 27 4.1.1 Effect of alkali and subcritical water treatments 30 4.2 Characterization of Taiwanese sugarcane bagasse 37 4.2.1 Moisture content and elemental analysis 37 4.2.2 Thermal analysis 37 4.2.3 Structural analysis 40 4.2.3.1 FT-IR analysis 40 4.2.3.2 NMR analysis 43 Chapter 5 Conclusion 46 References 47 Appendix

    Aguilar, R., Ramirez, J.A., Garrote, G., & Vazquez, M. (2002). Kinetic study of the acid hydrolysis of sugarcane bagasse. J. Food Eng., 55, 309-318.
    Aiello, C., Ferrer, A., & Ledesma, A. (1996). Effect of alkaline treatments at various temperatures on cellulose and biomass production using submerged sugarcane bagasse fermentation with Trichoderma reesei QM 9414, Bioresour. Technol., 57, 13-18.
    Almazan, O., Gonzalez, L., & Galvez, L. (2001). The sugarcane, its by-products and co-products. Sugar Cane Int., 7, 3-8.
    Argyropolous, D.S., & Menachem, S.B. (1988) Lignin. In: Kaplan, D.L. Editor, Biopolymers from renewable resources, Springer, Berlin, 292, 322.
    Ashori, A., Nourbakhsh, A., & Karegarfard, A. (2009). Properties of medium density fiberboard based on bagasse fibers. J. Compos. Mater., 43, 1927-1934.
    Bengtsson, S., & Aman, P. (1990). Isolation and chemical characterization of water-soluble arabinoxylans in rye grain. Carbohydr. Polym., 12, 267– 277.
    Cardona, C.A., Quintero, J.A., & Paz, I.C. (2010). Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol., 101, 4754-4766.
    Caraschi, J.C., Campana, F., & Curvelho, A.A.S. (1996). Preparation and characterization of dissolving pulps obtained from sugarcane bagasse, Polimeros: Ciencia e Tecnologia, 6, 24-29.
    Conner, A.H., & Lorenz, L.F. (1986). Kinetic modeling of hardwood prehydrolysis. Part III: Water and dilute acetic acid of southern red oak prehydrolysis. Wood Fiber Sci., 18, 248-263.
    David, C., Fornasier, R., Greindl-Fallon, C., & Vanlautem, N. (1985). Enzymatic hydrolysis and bacterian hydrolysis-fermentation of Eucalyptus wood pretreated with sodium hypochlorite. Biotechnol. Bioeng., 26, 1591-1595.
    Dawson, L., & Boopathy, R. (2008). Cellulosic ethanol production from sugarcane bagasse without enzymatic saccharification. BioResources, 3, 452-460.
    de los Santos, M., Batlle, R., Salafranca, J., & Nerin, C. (2005). Subcritical water and dynamic sonication-assisted solvent extraction of fluorescent whitening agents and azo dyes in paper samples. J. Chromatogr. A, 1064, 135-141.
    Duff, S.J.B., & Murray, W.D. (1996). Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol., 55, 1-33.
    Ehrman, T. (1994). Standard test method for moisture, total solids, and total dissolved solids in biomass slurry and liquid process samples. In: Laboratory Analytical Procedure No. 012. Golden, CO: National Renewable Energy Laboratory.
    Esteghlalian, A., Hashimoto, A.G., Fenske, J.J., & Penner, M.H. (1997). Modeling and optimization of the dilute sulfuric acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol., 59, 129-136.
    Fabian, C.B. (2009). Isolation and characterization of protein, phenolic acid, and starch from defatted rice bran. Ph.D Thesis, National Taiwan University of Science and Technology, 68-78.
    Felipe, M.G.A., Vieira, D.C., Vitolo, M., Silva, S.S., Roberto, I.C., & Mancilha, I.M. (1995). Effect of acetic acid on xylose fermentation to xylitol by Candida guilliermondii. J. Basic Microbiol., 35, 171-177.
    Felipe, M.G.A., Alves, L.A., Silva, S.S., Roberto, I.C., Mancilha, I.M., & Almeida Silva, J.B. (1996). Fermentation of eucalyptus hemicellulosic hydrolysate to xylitol by Candida guillliermondii. Bioresour. Technol., 56, 281-283.
    Felipe, M.G.A., Vitolo, M., Mancilha, I.M., & Silva, S.S. (1997). Environmental parameters affecting xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Candida guillliermondii. J. Basic Microbiol., 18, 251-254.
    Fry, S.C. (1982). Phenolic components of the primary cell wall. Biochem. J, 203, 493-504.
    Gupta, S., Madan, R.N., & Bansal, M.C. (1987). Chemical composition of Pinus caribaea hemicellulose. Tappi J., 70, 113-114.
    Glasser, W.G., Barnett, C.A., Rials, T.G., & Saraf, V.P. (1984). Engineering plastics from lignin. 2. Characterization of hydroxyalkyl lignin derivatives. J. Appl. Polym. Sci., 29, 1815-1930.
    Glasser, W.G., & Leitheiser, R.H. (1984). Engineering plastics from lignin. 11. Hydroxypropyl lignins as components of fire resistant foams. Polym. Bull., 12, 1-5.
    Gnansounou, E. (2010). Production and use of lignocellulosic bioethanol in Europe: Current situation and perspectives. Bioresour. Technol., 101, 4842-4850.
    Godshall, M.A. (2005). Enhancing the agro-industrial value of the cellulosic residues of sugarcane. Int. Sugar J., 107, 53-60.
    Goheen, D.W., & Henderson, J.T. (1978). The preparation of unsaturated hydrocarbons from lignocellulose materials. Cellul. Chem. Technol., 12, 363-372.
    Goheen, D.W., & Hoyt, C.H. (1981). Lignin. In: Mark H.F., Othmer, D.F., Overseger, C.G., & Seaborg, G.T. Editors, Kirk-Othmer Encycl. Chem. Technol., third edition. 14, John Wily & Sons, New York, 294-312.
    Gong, C.S., Chen, C.S., & Chen, L.F. (1993). Pretreatment of sugarcane bagasse hemicellulose hydrolyzate for ethanol production by yeast. Appl. Biochem. Biotechnol., 39-40, 83-88.
    Grethlein, H.E., & Converse, A.O. (1991). Common aspects of acid prehydrolysis and steam explosion for pretreating wood. Bioresour. Technol., 36, 77-82.
    Hailing, P., & Simms-Borre, P. (2008). Overview of lignocellulosic feedstock conversion into ethanol - focus on sugarcane bagasse. Int. Sugar J., 110, 191-194.
    Hashimoto, S., Watanabe, K., Nose, K., & Morita, M. (2004). Remediation of soil contaminated with dioxins by supercritical water extraction. Chemosphere, 54, 89-96.
    Ibanez, E., Kubatova, A., Senorans, F.J., Cavero, S., Reglero, G., & Hawthorne, S.B. (2003). Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food. Chem., 51, 375-382.
    Iiyama, K., Lam, T.B.T., & Stone, B.A. (1994). Covalent cross-links in the cell wall. Plant Physiol., 104, 315-320.
    Ismail, M.R., Youssef, H.A., Ali, M.A, Zahran, A.H., & Afifi, M.S. (2008). Utilization of emulsion polymer for preparing bagasse fibers polymer-cement composites. J. Appl. Polym. Sci., 107, 1900-1910.
    Kawagishi, H., Kanao, T., Inagaki, R., Mizuno, T., Shimura, K., Ito, H., Hagiwara, T., & Nakamura, T. (1990). Formolysis of a potent antitumor (1−6)-β-D-glucan protein complex from Agaricus blazei fruiting bodies and antitumor-activity of the resulting products. Carbohydr. Polym., 12, 393– 403.
    Kilicaslan, I., Sarac, H.I., Ozdemir, E., & Ermiş, K. (1999). Sugarcane as an alternative energy source for Turkey. Energy Convers. Manage., 40, 1-11.
    Kondo, T., Ohshita, T., & Kyuma, T. (1992). Comparison of characteristics of soluble lignins from untreated and ammonia-treated wheat straw. Anim. Feed Sci. Technol., 39, 253–263.
    Kuo, C.H. (2009). Cellulose dissolution for its enzymatic saccharification and fermentation applications. Ph.D Thesis, National Taiwan University of Science and Technology, 6-10.
    Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., & Lynd, L.R. (2002). A comparison of liquid hot water and steam pretreatments of sugarcane bagasse for bioconversion to ethanol. Bioresour. Technol., 81, 33-44.
    Lawther, J.M., Sun, R., & Banks, W.B. (1996). Fractional characterization of alkali-labile lignin and alkali-insoluble lignin from wheat straw. Ind. Crops Prod., 5, 291-300.
    Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol., 56, 1-24.
    Lesage-Meessen, L., Delattre, M., Haon, M., Thibault, J.F., Ceccaldi, B.C., Brunerie, P., & Asther, M. (1996). A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. J. Biotechnol., 50, 107-113.
    Max, B., Torrado, A.M., Moldes, A.B., Converti, A., & Dominguez, J.M. (2009). Ferulic acid and p-coumaric acid solubilization by alkaline hydrolysis of the solid residue obtained after acid prehydrolysis of vine shoot prunings: effect of the hydroxide and pH. Biochem. Eng. J., 43, 129-134.
    Mbohwa, C., & Fukuda, S. (2003). Elecrticity from bagasse in Zimbabwe. Biomass Bioenergy, 25, 197-207.
    Mirza, U.K., Ahmad, N., & Majeed, T. (2008). An overview of biomass energy utilization in Pakistan. Renewable Sustainable Energy Rev., 12, 1988-1996.
    Mohamed, A.R., Mohammadi, M., & Darzi, G.N. (2010). Preparation of carbon molecular sieve from lignocellulosic biomass: A review. Renewable Sustainable Energy Rev., 14, 1591-1599.
    Mussatto, S.I., Dragone, G., & Roberto, I.C. (2007). Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer’s spent grain. Ind. Crops Prod., 25, 231-237.
    Nagieb, Z.A., Abd-El-Sayed, E.S., E-I-Sakhawy, M., & Khalil, E.M. (2000). Hydrogen peroxide alkaline pulping of bagasse. IPPTA, 12, 23-34.
    Nelson, D.A., Molton, P.M., Russel, J.A., & Hallen, R.T. (1984). Application of direct thermal liquefication for the conversion of cellulosic biomass. Ind. Eng. Chem. Prod. Res. Dev., 23, 471-475.
    Neureiter, M., Danner, H., Thomasser, C., Saidi, B., & Braun R. (2002). Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl. Biochem. Biotechnol., 98-100, 49-58.
    Nguyen, Q.A., Tucker, M.P., Keller, F.A., Beaty, D.A., Connors, K.M., & Eddy, F.P. (1999). Dilute acid hydrolysis of softwoods. Appl. Biochem. Biotechnol., 77-79, 133-142.
    Nguyen, Q.A., Tucker, M.P., Keller, F.A., & Eddy, F.P. (2000). Two-stage dilute-acid pretreatment of softwoods. Appl. Biochem. Biotechnol., 84-86, 561-576.
    Nieduszynski, I.A., & Marchessault, R.H. (1972). Structure of β,d(1→4′)-xylan hydrate. Biopolymers, 11, 1335-1344.
    Nimz, H.H, & Casten, R. (1986). Chemical processing of lignocellulosics. Holz Roh Werkst., 44, 207–212.
    Olsson, L., & Hahn-Hagerdal, B. (1996). Fermentation of lignocellulosic hydrolysates for ethanol production, Enzyme Microb. Technol., 18, 312-331.
    Pandey, A., Soccol, C.R., Nigam, P., & Soccol, V.T. (2000). Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol., 74, 69-80.
    Peterson, A.A., Vogel, F., Lachance, R.P., Frӧling, M., Antal, Jr., M.J., & Tester, J.W. (2008). Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci., 1, 32-65.
    Prasad, S., Singh, A., & Joshi, H.C. (2007). Ethanol as an alternative fuel from agricultural industrial and urban residues. Resour. Conserv. Recycl., 50 (2007) 1-39.
    Rainey, T.J., Covey, G., & Shore, D. (2006). An analysis of Australian sugarcane regions for bagasse paper manufacture. Int. Sugar J., 108, 640-644.
    Rangan, S.G. (1986). Bagasse—India’s future fibre for paper industry, IPPTA, 23, 1-6.
    Renuka Devi, R., & Arumughan, C., (2007). Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresour. Technol., 98, 3037-3034.
    Robbins, R.J. (2003). Phenolic acids in foods: an overview of analytical methodology, J. Agric. Food. Chem., 51, 2866–2887.
    Rodrigues, R.C.L.B., Felipe, M.G.A., Sil, J.B.A., & Vitolo, M. (2003). Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process vaeiables. Process Biochem., 38, 1231–1237.
    Rodrigues, R.d.C.L.B., Rocha, G.J.M., Rodrigues Jr., D., Filho, H.J.I., Felipe, M.d.G.A., & Pessoa Jr., A. (2010). Scale-up of diluted sulfuric acid hydrolysis for producing sugarcane bagasse hemicellulosic hydrolysate (SBHH). Bioresour. Technol., 101, 1247-1253.
    Saha, B.C. (2003). Hemicellulose bioconversion, J. Ind. Microbiol. Biotechnol., 30, 279-291.
    Saraf, V.P., & Glasser, W.G. (1984). Engineering plastics from lignin. 3. Structure property relationships in solution cast polyurethane films. J. Appl. Polym. Sci., 29, 1831-1841.
    Sasaki, M., Adschiri, T., & Arai, K. (2003). Fractionation of sugarcane bagasse by hydrothermal treatment. Bioresour. Technol., 86, 301-304.
    Sasaki, M., Adschiri, T., & Arai, K. (2004). Kinetics of cellulose conversion at 25 MPa in sub- and supercritical water. AlChE J., 50, 192-202.
    Sealock, L. J., Elliot, D. C., Baker, E. G., & Butner, R. S. (1993). Chemical processing in high pressure aqueous environments. 1. Historical perspective and continuing developments. Ind. Eng. Chem. Res., 32, 1535-1541.
    Shukry, N., Hassan, E.M., Yousef, M.A., & Fadel, S.M. (2002). Pulping of sugarcane bagasse with acetic acid under atmospheric pressure. IPPTA, 14, 37-43.
    Song, C., Hu, H., Zhu, S., Wang, G., & Chen, G. (2004). Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels, 18, 90-96.
    Sun, J.X., Sun, X.F., Sun, R.C., & Su, Y.Q. (2004). Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses. Carbohydr. Polym., 56, 195-204.
    Sun, R.C., Lawther, J.M., & Banks, W.B. (1996). Fractional and structural characterization of wheat straw hemicelluloses. Carbohydr. Polym., 29, 325-331.
    Sun, R.C., Xiao, B., & Lawther, J.M. (1997). Fractional and structural characterization of ball-malled and enzyme lignins from wheat straw. J. Appl. Polym. Sci., 68, 1633-1641.
    Sun, R.C., Fang, J.M., Tomkinson, J., & Hill, C.A.S. (1999). Esterification of hemicelluloses from poplar chips in homogenous solution of N,N-dimethylformamide/lithium chloride. J. Wood Chem. Technol., 19, 287– 306.
    Sun, R. C., & Tomkinson, J. (2002). Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw. Carbohydr. Polym., 50, 263– 271.
    Sun, R.C., Tomkinson, J., & Ye, J. (2003). Physico-chemical and structural characterization of residual lignins isolated with TAED activated peroxide from ultrasound irradiated and alkali pre-treated wheat straw. Polym. Degrad. Stab., 79, 241–251.
    Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 83, 1-11.
    Sun, Y., & Cheng, J. (2004). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol., 83, 1-11.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., & Rogers, R.D. (2002). Dissolution of cellose with ionic liquids. J. Am. Chem. Soc., 124, 4974-4975.
    Springer, E.L. (1966). Hydrolysis of aspenwood xylan with aqueous solutions of hydrochloric acid. TAPPI, 49, 102-106.
    Torre, P., Aliakbarian, B., Rivas, B., Dominguez, J.M., & Converti, A. (2008). Release of ferulic acid from corn cobs by alkaline hydrolysis. Biochem. Eng. J., 40, 500-506.
    Torres y Torres, J.L., & Rosazza, J.P.N. (2001). Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata, J. Nat. Prod., 64, 1408–1414.
    Tsai, T.H. (2008). Production of biodiesel from supercritical methanol and rice bran oil. Master Thesis, National Taiwan University of Science and Technology, 20-21.
    Varhegyi, G., Antal, M.J., Jr., Szekely, T., Till, F., Jakab, E., & Szabo, P. (1988). Simultaneous thermogravimetric-mass spectrometric studies of the thermal decomposition of biopolymers. 2. Sugarcane bagasse in the presence and absence of catalysts. Energy Fuels, 2, 273-277.
    Wu, L.C.F., & Glasser, W.G. (1984). Engineering plastics from lignin. 1. Synthesis of hydroxypropyl lignin. J. Appl. Polym. Sci., 29, 1111-1123.
    Xu, F., Sun, R.C., Sun, J.X., Liu, C.F., He, B.H., & Fan, J.S. (2005). Determination of cell wall ferulic and p-coumaric acids in sugarcane bagasse. Anal. Chim. Acta, 552, 207-217.
    Xu, X., Yao, F., Wu, Q., & Zhou, D. (2009). The influence of wax-sizing on dimension stability and mechanical properties of bagasse particleboard. Ind. Crops Prod., 29, 80-85.
    Yu, Z.Y., & Howard, L.R. (2005). Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J. Food Sci., 70, 270-276.
    Zadrazil, F., & Puniya, A.K. (1995). Studies on the effect of particle size on solid-state fermentation of sugarcane bagasse into animal feed using white-rot fungi. Bioresour. Technol., 54, 85-87.
    Zhang, Y.H.P. (2008). Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J. Ind. Microbiol. Biotechnol., 35, 367-375.
    Zhang, Y.H.P., & Lynd, L.R. (2004). Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase system. Biotechnol. Bioeng., 88, 797-824.

    QR CODE