簡易檢索 / 詳目顯示

研究生: 翁永承
YONG-CHENG WONG
論文名稱: 軟性微光學元件粉體壓印複製技術開發與研究
Development and Study of Nanopowder Imprint Technology for Replication of Flexible Micro-Optical Components
指導教授: 李俊毅
Jiunn-Yih Lee
口試委員: 邱顯堂
Hsien-Tang Chiu
邱士軒
Shih-Hsuan Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: 奈米粉體壓印壓印技術壓印奈米
外文關鍵詞: Nanopowder Imprint, Imprint Technology, Imprint, Nano
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於光電技術蓬勃發展,各種電子產品朝向微小化發展,諸如光碟機、數位相機等。為達成微小化、輕量化之目標,需依靠微元件的進展,如微透鏡陣列、繞射光學元件等,而其中微透鏡陣列更是應用最廣泛的光學元件之ㄧ,其廣泛應用在顯示元件、光學感測、無線通訊與光纖通訊等。傳統製造技術已逐漸無法應付精密微結構元件之生產,因此亟需開發出精密、快速且大量的微結構元件複製成型技術。
    本研究開發創新壓印技術,結合奈米粉體壓印技術及陣列式UV光固化技術,利用奈米粉體作為傳達壓印力量之方法,並融合軟微影、光固化阻劑及氣體輔助施壓技術等技術特點,研究於製作微透鏡陣列之製程技術開發,致使奈米壓印的應用與技術更趨成熟。研究結果顯示,具陣列微孔洞SUS 304不銹鋼片輔以氣體輔助微熱壓可順利製作原始微透鏡陣列模具,PDMS並可精確的翻鑄複製出互補外形之微透鏡陣列結構,並搭配本研究開發之氣體輔助奈米粉體壓印技術均勻施壓下,配合陣列UV均勻曝光固化,將可有效進行微透鏡之完整成型,同時與基材表面達到完美接觸,可大幅提昇有效壓印面積及提高轉印重現性;而且PDMS軟模製作容易、翻鑄時間短,可有效降低成本,加上其具有表面自由能低,壓印時不易與阻劑沾黏等特性,搭配氣體輔助奈米粉體壓印確實是微結構製程上一大優勢。


    Since the electro-optic technology is developing vigorously, the design of electronic products is becoming more compact, such as DVD players and digital cameras. In order to achieve smaller size and lighter weight, micro elements need to be developed, such as microlens arrays and diffractive optical elements. Microlens arrays are among the most widely used optical components, which are used in display components, optical sensors, wireless communication, and optical fiber communication. Conventional production technologies can no longer meet the demand for producing precise micro elements, thus, a replication molding technology for mass production of precise micro components is urgently needed.
    This study developed creative imprinting technology, combining nano-imprint lithography and array-type UV-curing technology. It used nanopowders as the method to transmit imprint force, and integrated technical features, such as soft lithography, light-curing resistant and gas-assisted imprint technology, in order to study the development of technological processes of micro-lens array manufacturing, and mature the application and technology of nano-imprinting. According to research results, SUS 304 stainless steel sheet with a micro-hole array could be smoothly fabricated into an original micro-lens array mold upon gas-assisted micro-hot embossing. At the same time, a micro-lens array structure with a complementary external form could be precisely remolded and reproduced by PDMS. Complete molding of micro-lens could be effectively achieved by combining imprints of gas-assisted lithography developed in this study, and even UV-NIL. The effective imprinting area and reproducibility of transfer printing could be greatly improved when a micro-lens contacts perfectly with a substrate surface. Moreover, since PDMS soft molds have short remolding times, and are easily feathered during manufacturing, production costs could be effectively reduced through features such as, low surface free energy, resistant to adhering to the mold during imprinting, and collocation of gas-assisted nanopowder imprinting of micro-structural processes.

    摘 要 ...I Abstract .II 致 謝 III 目 錄 IV 圖表索引 ..VI 第1章 緒論 …….1 1-1 微/奈米結構發展與限制 1 1-2 微轉印複製成型技術簡介 2 1-2-1 熱壓式奈米壓印微影技術(NIL) 3 1-2-2 蝕刻微影成像技術(Soft Lithography) 5 1-2-3 奈米壓印與光微影整合技術 7 1-2-4 氣體輔助熱壓印製程 8 1-3 可紫外光固化光阻轉印成型簡介 9 1-3-1 紫外光奈米壓印微影術(UV-NIL) 9 1-3-2 步進快閃式壓印微影(SFIL) 11 1-3-3 可紫外光固化阻劑簡介 14 1-4 研究動機與目的 16 1-5 文獻總結與研究創新 17 第2章 實驗方法 …….19 2-1 實驗流程 19 2-2 實驗材料與設備建置 20 2-2-1 實驗材料 20 2-2-1-1 微熱壓印用PC成型材料 20 2-2-1-2 奈米粉體壓印用SU-8光固化成型材料 20 2-2-1-3 PDMS軟模材料 22 2-2-2實驗機台設計與相關製程組件製備 22 2-2-2-1 微熱壓成型機 22 2-2-2-2 奈米粉體壓印機台設計與開發 24 2-2-2-3 奈米粉體材料製備 25 2-3 微熱壓印製程方法與微結構壓印複製製作製程 28 2-3-1 微熱壓印製程方法 28 2-4 微熱壓印技術之壓印缺陷與觀察 31 2-5 創新奈米粉體壓印技術製作微透鏡陣列結構之製程 32 2-5-1 奈米粉流體壓印原理 32 2-5-2 原始母模具 36 2-5-3 氣體微熱壓製程與微透鏡原始PC母模具製備 38 2-5-4 PDMS翻模 39 2-5-5 奈米粉體壓印微透鏡製作步驟 39 第3章 結果與討論 …….42 3-1 微熱壓印成型實驗探討 42 3-1-1 不當成型壓印壓力的微熱壓印複製缺陷問題探討 42 3-1-1-1壓印力過小之影響 42 3-1-1-2壓印力過大之影響 44 3-1-2 不當成型壓印溫度的微熱壓印複製缺陷問題探討 46 3-1-2-1壓印溫度過低之影響 46 3-1-2-2壓印溫度過高之影響 47 3-1-3 其它的微熱壓印複製缺陷問題 48 3-1-3-1包封現象 48 3-1-3-2壓印力不均勻之影響 49 3-1-4 完美微熱壓印複製探討 50 3-1-5 本節小結 51 3-2 氣體輔助奈米粉流體壓印複製成型實驗探討 52 3-2-1 施壓均勻性探討 52 3-2-2 壓印成型性參數探討 53 3-2-3 複製成形性探討 54 3-2-4 表面粗糙度探討 55 3-2-5 光學特性探討 56 3-2-6 本節小結 …..58 第4章 結論 …….59 參考文獻 ..61

    1. http://www.technologyreview.com/files/8834/FlexibleSiliconBG.jpg
    2. http://4engr.com/images/research/47a8008f2db82e6cbd3b03c511c42eba.jpg
    3. http://www.acreo.se/upload/Core-competence/Org-electronics/Printing_1.jpg
    4. http://www.evgroup.com/ScaledImages/14212-lightbox-gallery.jpg
    5. S. Y. Yang, S. C. Nian, and I. C. Sun, “Flow Visualization of Filling Process during
    Micro-Injection Molding”, International Polymer Processing, Vol. 17, No. 4, pp. 354-360 (2002).
    6. J. H. Chang, and S. Y. Yang,“Gas pressurized hot embossing for transcription of micro-feartures”, Microsystem Technologies, Vol. 10, No. 1, pp.76-80 (2003).
    7. M. J. Couper, A. E. Neeson, and J. R. Griffiths, “Casting Defects and the Fatigue Behaviour of an Aluminium Casting Alloy”, Fatigue Fract. Eng. Mater. Struct., Vol. 13, No. 3, pp. 213-227 (1990).
    8. Stephen Y. Chou, Golden Valley, Nanoimprint lithography, United States Patent, 5772905, (1998).
    9. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography”, J. Vac. Sci. Technol. B, Vol. 14, No. 6, pp. 4129-4133 (1996).
    10. D. Austin Michael, Haixiong Ge, Wei Wu, Mingtao Li, Zhaoning Yu, D. Wasserman, S. A. Lyon, and S. Y. Chou, “Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography”, Applied Physics Letters, Vol. 84, No. 26, pp. 5299-5301 (2004).
    11. S. Y. Chou, C. Keimel, and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, Vol. 417, pp. 835-837 (2002).
    12. Xia, Y. and Whitesides, G. M., "Soft Lithography", Angew. Chem. Int. Ed., 37, 550-575. (1998).
    13. T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. L. Wilbur and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology, 7, 447–451 (1996).
    14. J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim and G. M. Whitesides, Microcontact printing of self-assembled monolayers applications in microfabrication,” Nanotechnology, 7, 452–457 (1996).
    15. Amit Kumar and George M. Whitesides, “Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching”, Appl. Phys. Lett. 63 (1993) 2002.
    16. Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin, and John A. Rogers, “Interfacial Chemistries for Nanoscale Transfer Printing”, J. AM. CHEM. SOC. 124 ,7654-7655 (2002).
    17. Xing Cheng, L. Jay Guo *, “A combined nanoimprint and photolithography patterning technique”, Microelectronic Engineering 71 ,277–282 (2004).
    18. 張哲豪,” 流體微熱壓製程開發研究”,臺灣大學博士論文,民國93年6月。
    19. Zhao, X.M., Xia, Y., Schueller, O.J.A., Qin, D., Whitesides, G.M., ” Fabrication of microstructures using shrinkable polystyrene films”, Sensors and Actuators A, Vol: 65, Issue: 2-3,pp. 209-217(1998).
    20. U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner and H. Kurz, “Wafer scale patterning by soft UV-nanoimprint lithography”, Microelectronic Engineering, 73-74, 167-171 (2004).
    21. C. G. Willson, M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivasan, and J. G. Ekerdt, “Step and Flash Imprint Lithography: A new approach to high resolution patterning”, Proc. SPIE 3676(I): 379 (1999).
    22. P. Dannberg, R. Bierbaum, L. Erdmann, and A. Braeuer, “Wafer scale integration of micro-optic and optoelectronic elements by polymer UV reaction molding,” Proceedings of SPIE -The International Society for Optical Engineering, 3631, 244-251 (1999).
    23. S.-M. Kim, D. Kim, S. Kang and S. Ahn, “Replication of micro-optical components by UV-molding process,” Proceedings of SPIE -The International Society for Optical Engineering, 4984, 63-69 (2003).

    無法下載圖示 全文公開日期 2015/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE