簡易檢索 / 詳目顯示

研究生: Thi-Yen-Nhu Pham
Thi-Yen-Nhu Pham
論文名稱: 以正己烷為溶劑,從水解後的咖啡渣和米糠中提取油脂: 動力學和平衡數據
LIPID EXTRACTION FROM POST-HYDROLYSIS SPENT COFFEE GROUNDS AND RICE BRAN WITH N-HEXANE AS SOLVENT: KINETIC AND EQUILIBRIUM DATA
指導教授: 吳耀豐
ALCHRIS WOO GO
朱義旭
YI-HSU JU
口試委員: 朱義旭
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 113
中文關鍵詞: 平衡動力學脂質萃取水解後殘留米糠咖啡渣
外文關鍵詞: equilibrium, kinetics, lipid extraction, post-hydrolysis residue, rice bran, spent coffee grounds
相關次數: 點閱:153下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 咖啡渣(SCG)和米糠(RB)分別是在沖泡咖啡豆和碾磨水稻後的殘留物。這些殘留物含有相當量的脂質(〜16%w / w)。為使SCG和RB具有經濟價值,將這些殘留物進行酸水解,以生產含糖的水解產物和富含脂質的水解後殘留物(PHR)。水解後的廢咖啡渣(PHSCG)和米糠(PHRB)仍然保有最初有用的脂質,其脂質的含量分別可高達〜26%w / w和〜48%w / w的脂質。有別於使用來自纖維素的富含糖的水解產物進行發酵,含高脂質的PHRs尚未經廣泛的探討及利用。因此需要收集脂質萃取的動力學和平衡數據,以進行程序和設備設計。本研究以正己烷為溶劑探討溶劑與固體的比例(4至12 mL / g)和溫度(30至60°C)對從PHSCG和PHRB中萃取脂質的動力學和平衡的影響。為描述脂質萃取系統,本研究使用各種動力學模型來擬和實驗數據,其中多階段模型最能代表萃取過程(R2≥0.99)。無論萃取溫度和SSR如何,都可以在很短的萃取時間(<10分鐘)內達到洗滌平衡,並且可以在30至60分鐘內萃取超過90%的脂質。可用較少溶劑從PHSCG和RB中萃取相同量的脂質;從SCG萃取脂質所需的溶劑最多可節省40%。此外,發現水解後殘餘物中的可得到脂質的適合作為生質柴油的原料。


    Spent coffee grounds (SCG) and rice bran (RB) are agro-industrial residues produced after brewing of coffee beans and milling of paddy rice, respectively. These residues contain appreciable amounts of lipids (~16 %w/w). One way of valorizing SCG and RB is to subject these residues to dilute acid hydrolysis for the production of sugar-rich hydrolysate and lipid-dense post-hydrolysis residues (PHRs). The post-hydrolysis spent coffee grounds (PHSCG) and rice bran (PHRB) retains the initially available lipids, resulting in lipid dense residues containing lipids of up to ~26 %w/w and ~48 %w/w, respectively. Unlike the use of sugar-rich hydrolysates from these lignocellulosic biomass for fermentation, lipid-dense PHRs have not been extensively explored and further utilized. This makes it necessary to gather lipid extraction kinetics and equilibrium data for process and equipment design. The effects of solvent-to-solid ratio (4 to 12 mL/g) and temperature (30 to 60 °C) on the kinetics and equilibrium of lipid extraction from PHSCG and PHRB using n-hexane as solvent were investigated. To appropriately describe the lipid extraction system, various kinetic models were fitted, with multi-step models best representing the extraction process (R2 ≥ 0.99). Regardless of extraction temperature and SSR, washing step equilibrium was reached at a very short extraction time (<10 minutes) and over 90 % of the lipids can be extracted within 30 to 60 minutes. Extraction of lipids from PHSCG and RB required less amount of solvent to extract and recover the same amount of lipids present in SCG and RB, saving up to 40 % of the solvent required for lipid extraction from SCG. Further, the lipid profile of the available lipids in the post hydrolysis residues were found suitable for as raw material for biodiesel production.

    摘要.................................................................................................................................................................... i ABSTRACT....................................................................................................................................................... ii ACKNOWLEDGMENT................................................................................................................................. iii TABLE OF CONTENTS................................................................................................................................. iv LIST OF FIGURES........................................................................................................................................... vi LIST OF TABLES............................................................................................................................................viii LIST OF ABBREVIATIONS.......................................................................................................................... ix Chapter 1 BACKGROUND OF STUDY................................................................................................... 1 1.1 Introduction............................................................................................................................................ 1 1.2 Goal and Objectives............................................................................................................................. 3 1.3 Significance of study........................................................................................................................... 3 1.4 Scope and limitation........................................................................................................................... 4 Chapter 2. REVIEW OF RELATED LITERATURE.................................................................................. 6 2.1 Biodiesel feedstock.............................................................................................................................. 6 2.1.1 Refined oils and fats......................................................................................................................... 6 2.1.2 Waste cooking oil.............................................................................................................................. 8 2.1.3 Alternative lipid-containing biomass........................................................................................ 9 2.2 Spent coffee ground...........................................................................................................................11 2.2.1 Availability of SCG........................................................................................................................... 12 2.2.2 Characteristic of SCG and its lipids........................................................................................... 14 2.3 Rice bran................................................................................................................................................ 16 2.3.1 Availability of Rice bran................................................................................................................ 17 2.3.2 Characteristic of Rice bran and its lipids................................................................................ 20 2.4 Hydrolysis of lipid containing biomass...................................................................................... 22 2.5 Lipid extraction.................................................................................................................................... 25 2.5.1 Solvents used in lipid extraction............................................................................................... 26 2.5.2 Variables influencing lipid extraction...................................................................................... 27 2.5.3 Solvent extraction of lipids from SCG and PHSCG............................................................. 29 2.5.4 Solvent extraction of lipids from Rice bran and PHRB...................................................... 31 2.6 Extraction kinetic models and thermodynamic assessment.............................................. 34 2.6.1 Models................................................................................................................................................. 34 2.6.2 Thermodynamic assessment...................................................................................................... 38 Chapter 3. MATERIAL AND METHODS.............................................................................................. 40 3.1 Collection, storage and dilute acid hydrolysis of SCG and RB.......................................... 40 3.2 Characterization of SCG, RB, PHSCG and PHRB and their lipids...................................... 41 3.3 Lipid extraction kinetic and thermodynamic evaluation.................................................... 42 3.3.1 Fitting of kinetic models.............................................................................................................. 43 3.3.2 Thermodynamic parameters...................................................................................................... 45 Chapter 4. RESULTS AND DISCUSSION............................................................................................ 46 4.1 Effect of temperature and SSR on lipid extraction kinetics................................................ 54 4.1.1 Equilibrium data and thermodynamic parameters............................................................ 69 Chapter 5. CONCLUSIONS..................................................................................................................... 78 References.................................................................................................................................................... 79

    [1] US Energy Information Administration, International Energy Outlook 2019 with projections to 2050, 2019. https://doi.org/10.5860/CHOICE.44-3624.
    [2] D. Huang, H. Zhou, L. Lin, Biodiesel: An alternative to conventional fuel, Energy Procedia. 16 (2012) 1874–1885. https://doi.org/10.1016/j.egypro.2012.01.287.
    [3] O.E. Ajala, F. Aberuagba, T.E. Odetoye, A.M. Ajala, Biodiesel: Sustainable Energy Replacement to Petroleum-Based Diesel Fuel - A Review, ChemBioEng Rev. 2 (2015) 145–156. https://doi.org/10.1002/cben.201400024.
    [4] United Nations Statistics Division, UN Data: A world of information, (2020). http://data.un.org/Search.aspx?q=Fuel (accessed April 30, 2020).
    [5] the U.S.D. of E. Office, Energy Efficiency and Renewable Energy, (n.d.).
    [6] K.A. Zahan, M. Kano, Biodiesel production from palm oil, its by-products, and mill effluent: A review, Energies. 11 (2018) 1–25. https://doi.org/10.3390/en11082132.
    [7] R. Piloto-Rodríguez, E.A. Melo, L. Goyos-Pérez, S. Verhelst, Conversion of by-products from the vegetable oil industry into biodiesel and its use in internal combustion engines: A review, Brazilian J. Chem. Eng. 31 (2014) 287–301. https://doi.org/10.1590/0104-6632.20140312s00002763.
    [8] R. Campos-Vega, G. Loarca-Piña, H.A. Vergara-Castañeda, B. Dave Oomah, Spent coffee grounds: A review on current research and future prospects, Trends Food Sci. Technol. 45 (2015) 24–36. https://doi.org/10.1016/j.tifs.2015.04.012.
    [9] P. Trevisani Juchen, M. Nolasco Araujo, F. Hamerski, M.L. Corazza, F.A. Pedersen Voll, Extraction of parboiled rice bran oil with supercritical CO2 and ethanol as co-solvent: Kinetics and characterization, Ind. Crops Prod. 139 (2019) 111506. https://doi.org/10.1016/j.indcrop.2019.111506.
    [10] P. Ahmad, Oilseed Crops: Yield and Adaptations under Environmental Stress, 2017.
    [11] A. Pandey, C. Larroche, C.G. Dussap, E. Gnansounou, S.K. Khanal, S. Ricke, Biofuels: Alternative feedstocks and conversion processes for the production of liquid and gaseous biofuels, 2019. https://doi.org/10.1016/C2018-0-00957-3.
    [12] R.J.A. Chato, C.C.R. Cuevas, J.S.N. Tangpuz, L.K. Cabatingan, A.W. Go, Y.H. Ju, Dilute acid hydrolysis as a method of producing sugar-rich hydrolysates and lipid-dense cake residues from copra cake, J. Environ. Chem. Eng. 6 (2018) 5693–5705. https://doi.org/10.1016/j.jece.2018.08.072.
    [13] S. Sutanto, A.W. Go, K.H. Chen, S. Ismadji, Y.H. Ju, Maximized Utilization of Raw Rice Bran in Microbial Oils Production and Recovery of Active Compounds: A proof of concept, Waste and Biomass Valorization. 8 (2017) 1067–1080. https://doi.org/10.1007/s12649-016-9685-z.
    [14] S. Sutanto, A.W. Go, K.H. Chen, P.L.T. Nguyen, S. Ismadji, Y.H. Ju, Release of sugar by acid hydrolysis from rice bran for single cell oil production and subsequent in-situ transesterification for biodiesel preparation, Fuel Process. Technol. 167 (2017) 281–291. https://doi.org/10.1016/j.fuproc.2017.07.014.
    [15] S. Sutanto, A.W. Go, S. Ismadji, Y.H. Ju, Hydrolyzed rice bran as source of lipids and solid acid catalyst during in situ (trans)esterification, Biofuels. 11 (2020) 221–227. https://doi.org/10.1080/17597269.2017.1348190.
    [16] A.W. Go, A.T. Conag, D.E.S. Cuizon, Recovery of Sugars and Lipids from Spent Coffee Grounds: A New Approach, Waste and Biomass Valorization. 7 (2016) 1047–1053. https://doi.org/10.1007/s12649-016-9527-z.
    [17] H.C. Nguyen, M.L. Nguyen, F.M. Wang, H.Y. Juan, C.H. Su, Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent, Bioresour. Technol. 296 (2020) 122334. https://doi.org/10.1016/j.biortech.2019.122334.
    [18] A.W. Go, A.T. Conag, M.M.N. Bertumen, Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds, Biofuels. 10 (2019) 193–205. https://doi.org/10.1080/17597269.2017.1309855.
    [19] S.I. Mussatto, L.M. Carneiro, J.P.A. Silva, I.C. Roberto, J.A. Teixeira, A study on chemical constituents and sugars extraction from spent coffee grounds, Carbohydr. Polym. 83 (2011) 368–374. https://doi.org/10.1016/j.carbpol.2010.07.063.
    [20] D.R. Vardon, B.R. Moser, W. Zheng, K. Witkin, R.L. Evangelista, T.J. Strathmann, K. Rajagopalan, B.K. Sharma, Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar, ACS Sustain. Chem. Eng. 1 (2013) 1286–1294. https://doi.org/10.1021/sc400145w.
    [21] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel. (2012). https://doi.org/10.1016/j.fuel.2012.01.023.
    [22] B. Ahangari, J. Sargolzaei, Extraction of lipids from spent coffee grounds using organic solvents and supercritical carbon dioxide, J. Food Process. Preserv. 37 (2013) 1014–1021. https://doi.org/10.1111/j.1745-4549.2012.00757.x.
    [23] M. Haile, Integrated volarization of spent coffee grounds to biofuels, Biofuel Res. J. (2014). https://doi.org/10.18331/BRJ2015.1.2.6.
    [24] R.W. Jenkins, N.E. Stageman, C.M. Fortune, C.J. Chuck, Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds, Energy and Fuels. 28 (2014) 1166–1174. https://doi.org/10.1021/ef4022976.
    [25] I. Efthymiopoulos, P. Hellier, N. Ladommatos, A. Kay, B. Mills-Lamptey, Effect of Solvent Extraction Parameters on the Recovery of Oil From Spent Coffee Grounds for Biofuel Production, Waste and Biomass Valorization. 10 (2019) 253–264. https://doi.org/10.1007/s12649-017-0061-4.
    [26] H. Mazaheri, H.C. Ong, H.H. Masjuki, Z. Amini, M.D. Harrison, C.T. Wang, F. Kusumo, A. Alwi, Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell, Energy. 144 (2018) 10–19. https://doi.org/10.1016/j.energy.2017.11.073.
    [27] G.F.Y. Juarez, K.B.C. Pabiloña, K.B.L. Manlangit, A.W. Go, Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery, Waste and Biomass Valorization. (2018). https://doi.org/10.1007/s12649-016-9813-9.
    [28] A. Demirbas, Biodiesel: A realistic fuel alternative for diesel engines, 2008. https://doi.org/10.1007/978-1-84628-995-8.
    [29] I. Ambat, V. Srivastava, M. Sillanpää, Recent advancement in biodiesel production methodologies using various feedstock: A review, Renew. Sustain. Energy Rev. 90 (2018) 356–369. https://doi.org/10.1016/j.rser.2018.03.069.
    [30] P. Adewale, M.J. Dumont, M. Ngadi, Recent trends of biodiesel production from animal fat wastes and associated production techniques, Renew. Sustain. Energy Rev. (2015). https://doi.org/10.1016/j.rser.2015.02.039.
    [31] V.K. Mishra, R. Goswami, A review of production, properties and advantages of biodiesel, Biofuels. (2018). https://doi.org/10.1080/17597269.2017.1336350.
    [32] V.B. Borugadda, V. V. Goud, Biodiesel production from renewable feedstocks: Status and opportunities, Renew. Sustain. Energy Rev. (2012). https://doi.org/10.1016/j.rser.2012.04.010.
    [33] B.L. Salvi, N.L. Panwar, Biodiesel resources and production technologies - A review, Renew. Sustain. Energy Rev. (2012). https://doi.org/10.1016/j.rser.2012.03.050.
    [34] H.N. Bhatti, M.A. Hanif, M. Qasim, Ata-ur-Rehman, Biodiesel production from waste tallow, Fuel. (2008). https://doi.org/10.1016/j.fuel.2008.04.016.
    [35] Optimization of Biodiesel, Methanol and Methane Production and Air Quality Improvement, 2020. https://doi.org/10.3390/books978-3-03928-101-5.
    [36] G.. Olah, G.A.; Goeppert, A.; Prakash, Beyond oil and gas: the methanol economy, Focus Catal. (2006). https://doi.org/10.1016/s1351-4180(06)71901-8.
    [37] J.M. Encinar, N. Sánchez, G. Martínez, L. García, Study of biodiesel production from animal fats with high free fatty acid content, Bioresour. Technol. (2011). https://doi.org/10.1016/j.biortech.2011.09.068.
    [38] M.M. Gui, K.T. Lee, S. Bhatia, Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock, Energy. (2008). https://doi.org/10.1016/j.energy.2008.06.002.
    [39] M.G. Kulkarni, A.K. Dalai, Waste cooking oil - An economical source for biodiesel: A review, Ind. Eng. Chem. Res. 45 (2006) 2901–2913. https://doi.org/10.1021/ie0510526.
    [40] M. Sarno, M. Iuliano, Biodiesel production from waste cooking oil, Green Process. Synth. 8 (2019) 828–836. https://doi.org/10.1515/gps-2019-0053.
    [41] K.F. Haigha, B. Saha, G.T. Vladisavljević, J.C. Reynolds, Kinetics of the pre-treatment of used cooking oil using Novozyme 435 for biodiesel production, Procedia Eng. 42 (2012) 1106–1113. https://doi.org/10.1016/j.proeng.2012.07.502.
    [42] A. OA, A. AO, A. SE, Process Parameter Estimation of Biodiesel Production from Waste Frying Oil (Vegetable and Palm oil) using Homogeneous Catalyst, J. Food Process. Technol. 10 (2019) 1–10. https://doi.org/10.35248/2157-7110.19.10.811.
    [43] B. Stakeholders, Assessment of best practices in UCO processing and biodiesel distribution, RECOIL Power Used Cooked Oil. (2013).
    [44] A. Demirbas, A. Bafail, W. Ahmad, M. Sheikh, Biodiesel production from non-edible plant oils, Energy Explor. Exploit. 34 (2016) 290–318. https://doi.org/10.1177/0144598716630166.
    [45] A.E. Atabani, A.S. Silitonga, H.C. Ong, T.M.I. Mahlia, H.H. Masjuki, I.A. Badruddin, H. Fayaz, Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew. Sustain. Energy Rev. 18 (2013) 211–245. https://doi.org/10.1016/j.rser.2012.10.013.
    [46] S.S. Anjum, O. Prakash, A. Pal, Conversion of non-edible Argemone Mexicana seed oil into biodiesel through the transesterification process, Energy Sources, Part A Recover. Util. Environ. Eff. (2019). https://doi.org/10.1080/15567036.2018.1563244.
    [47] A.K.M.A. Islam, S.R.P. Primandari, Z. Yaakob, Non-Edible Vegetable Oils as Renewable Resources for Biodiesel Production: South-East Asia Perspective, in: Adv. Biofuels Bioenergy, 2018. https://doi.org/10.5772/intechopen.73304.
    [48] M. Balat, Potential alternatives to edible oils for biodiesel production - A review of current work, Energy Convers. Manag. (2011). https://doi.org/10.1016/j.enconman.2010.10.011.
    [49] X. Meng, J. Yang, X. Xu, L. Zhang, Q. Nie, M. Xian, Biodiesel production from oleaginous microorganisms, Renew. Energy. (2009). https://doi.org/10.1016/j.renene.2008.04.014.
    [50] L. Gouveia, A.C. Oliveira, Microalgae as a raw material for biofuels production, J. Ind. Microbiol. Biotechnol. (2009). https://doi.org/10.1007/s10295-008-0495-6.
    [51] H. Lin, Q. Wang, Q. Shen, J. Zhan, Y. Zhao, H. Lin, Q. Wang, Q. Shen, J. Zhan, Y. Zhao, Genetic engineering of microorganisms for biodiesel production Genetic engineering of microorganisms for biodiesel production © 2013 Landes Bioscience . Do not distribute, 5979 (2016) 292–304. https://doi.org/10.4161/bioe.23114.
    [52] S. Galafassi, D. Cucchetti, F. Pizza, G. Franzosi, D. Bianchi, C. Compagno, Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis, Bioresour. Technol. 111 (2012) 398–403. https://doi.org/10.1016/j.biortech.2012.02.004.
    [53] P.S. Murthy, M. Madhava Naidu, Sustainable management of coffee industry by-products and value addition - A review, Resour. Conserv. Recycl. (2012). https://doi.org/10.1016/j.resconrec.2012.06.005.
    [54] The United Nations, International Coffee Oranization, (2020). http://www.ico.org/new_historical.asp?section=Statistics (accessed May 10, 2020).
    [55] R. Cruz, M.M. Cardoso, L. Fernandes, M. Oliveira, E. Mendes, P. Baptista, S. Morais, S. Casal, Espresso coffee residues: A valuable source of unextracted compounds, J. Agric. Food Chem. 60 (2012) 7777–7784. https://doi.org/10.1021/jf3018854.
    [56] C.H.J. Brando, Harvesting and Green Coffee Processing, in: Coffee Growing, Process. Sustain. Prod. A Guideb. Grow. Process. Traders, Res., 2008. https://doi.org/10.1002/9783527619627.ch24.
    [57] A.S. Franca, L.S. Oliveira, Chemistry of defective coffee beans, in: Prog. Food Chem., 2008.
    [58] The United Nations, The Food and Agriculture Organization (FAO), (2020). http://www.fao.org/faostat/en/?#data/QC.
    [59] The United Nation, The Food and Agricuture Organization, (2020). http://www.fao.org/faostat/en/?#data/QC (accessed May 2, 2020).
    [60] B.D. Gartrell, C. Reid, Death by chocolate: A fatal problem for an inquisitive wild parrot, N. Z. Vet. J. 55 (2007) 149–151. https://doi.org/10.1080/00480169.2007.36759.
    [61] A.S. Loyao, S.L.G. Villasica, P.L.L. Dela Peña, A.W. Go, Extraction of lipids from spent coffee grounds with non-polar renewable solvents as alternative, Ind. Crops Prod. 119 (2018) 152–161. https://doi.org/10.1016/j.indcrop.2018.04.017.
    [62] I. Efthymiopoulos, P. Hellier, N. Ladommatos, A. Kay, B. Mills-Lamptey, Effect of Solvent Extraction Parameters on the Recovery of Oil From Spent Coffee Grounds for Biofuel Production, Waste and Biomass Valorization. (2019). https://doi.org/10.1007/s12649-017-0061-4.
    [63] N. Wang, L.-T. Lim, Physicochemical Changes of Coffee Beans During Roasting, J. Agric. Food Chem. (2012).
    [64] K. Somnuk, P. Eawlex, G. Prateepchaikul, Optimization of coffee oil extraction from spent coffee grounds using four solvents and prototype-scale extraction using circulation process, Agric. Nat. Resour. 51 (2017) 181–189. https://doi.org/10.1016/j.anres.2017.01.003.
    [65] A. Go, A. Conag, M. Mitzi N. Bertumen, Taguchi method to improve the production of sugar-rich hydrolysate from non-delipidated spent coffee grounds, and subsequent recovery of lipids and bioactive compounds, 2017. https://doi.org/10.1080/17597269.2017.1309855.
    [66] F. Acevedo, M. Rubilar, E. Scheuermann, B. Cancino, E. Uquiche, M. Garcés, K. Inostroza, C. Shene, Spent coffee grounds as a renewable source of bioactive compounds, J. Biobased Mater. Bioenergy. 7 (2013) 420–428. https://doi.org/10.1166/jbmb.2013.1369.
    [67] D. Pujol, C. Liu, J. Gominho, M.À. Olivella, N. Fiol, I. Villaescusa, H. Pereira, The chemical composition of exhausted coffee waste, Ind. Crops Prod. 50 (2013) 423–429. https://doi.org/10.1016/j.indcrop.2013.07.056.
    [68] W.T. Tsai, S.C. Liu, C.H. Hsieh, Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue, J. Anal. Appl. Pyrolysis. 93 (2012) 63–67. https://doi.org/10.1016/j.jaap.2011.09.010.
    [69] M.J. Martín, F. Pablos, A.G. González, M.S. Valdenebro, M. León-Camacho, Fatty acid profiles as discriminant parameters for coffee varieties differentiation, Talanta. 54 (2001) 291–297. https://doi.org/10.1016/S0039-9140(00)00647-0.
    [70] G. Budryn, E. Nebesny, D. Zyzelewicz, J. Oracz, K. Miśkiewicz, J. Rosicka-Kaczmarek, Influence of roasting conditions on fatty acids and oxidative changes of Robusta coffee oil, Eur. J. Lipid Sci. Technol. 114 (2012) 1052–1061. https://doi.org/10.1002/ejlt.201100324.
    [71] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel. 96 (2012) 70–76. https://doi.org/10.1016/j.fuel.2012.01.023.
    [72] FAO, FAO Outlook, (2016). http://www.fao.org/3/a-BO103e.pdf.
    [73] The United National, Food and Agriculture Organization, (2020). https://doi.org/http://www.fao.org/faostat/en/#data/QC.
    [74] The United Nation, The Food and Agriculture Organization (FAO), (n.d.). http://www.fao.org/faostat/en/#data/QC (accessed May 2, 2020).
    [75] N. Mohd Esa, T.B. Ling, By-products of Rice Processing: An Overview of Health Benefits and Applications, Rice Res. Open Access. 4 (2016). https://doi.org/10.4172/jrr.1000107.
    [76] A.M. Mullen, C. Álvarez, M. Pojić, T.D. Hadnadev, M. Papageorgiou, Classification and target compounds, 2015. https://doi.org/10.1016/B978-0-12-800351-0.00002-X.
    [77] M. Alauddina, A., Islam, J., Shirakawaa, H., Koseki, T., Ardiansyah, A., & Komai, Rice Bran as a Functional Food: An Overview of the Conversion of Rice Bran into a Superfood/Functional Food, Intech. (2017). https://doi.org/http://dx.doi.org/10.5772/57353.
    [78] U.R. Federation, Think rice, (2019). https://www.thinkrice.com/all-about-u-s-rice/how-rice-is-grown/rice-anatomy/.
    [79] The United Nation, The Food and Agricuture Organization, (2020).
    [80] H.J. (COO) Friedrich Schwandt (CEO), Statista, (n.d.). https://doi.org/https://www.statista.com/statistics/671339/production-of-paddy-in-vietnam/.
    [81] H. Mazaheri, H.C. Ong, H.H. Masjuki, Z. Amini, M.D. Harrison, C.T. Wang, F. Kusumo, A. Alwi, Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell, Energy. 144 (2018) 10–19. https://doi.org/10.1016/j.energy.2017.11.073.
    [82] H. Mazaheri, H.C. Ong, H.H. Masjuki, Z. Amini, M.D. Harrison, C.T. Wang, F. Kusumo, A. Alwi, Rice bran oil based biodiesel production using calcium oxide catalyst derived from Chicoreus brunneus shell, Energy. (2018). https://doi.org/10.1016/j.energy.2017.11.073.
    [83] J. Zúñiga-Diaz, E. Reyes-Dorantes, A. Quinto-Hernandez, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Oil extraction from “Morelos Rice” bran: Kinetics and raw oil stability, J. Chem. 2017 (2017). https://doi.org/10.1155/2017/3837506.
    [84] Zhimin Xu, PURIFICATION AND ANTIOXIDANT PROPERTIES OF RICE BRAN y-ORYZANOL COMPONENTS, (1998) 1–113. https://pdfs.semanticscholar.org/9b64/c756057e265576daeadbc3cba8bda514e186.pdf.
    [85] A. Moongngarm, N. Daomukda, S. Khumpika, Chemical Compositions, Phytochemicals, and Antioxidant Capacity of Rice Bran, Rice Bran Layer, and Rice Germ, APCBEE Procedia. 2 (2012) 73–79. https://doi.org/10.1016/j.apcbee.2012.06.014.
    [86] R. Pandey, S.L. Shrivastava, Comparative evaluation of rice bran oil obtained with two-step microwave assisted extraction and conventional solvent extraction, J. Food Eng. 218 (2018) 106–114. https://doi.org/10.1016/j.jfoodeng.2017.09.009.
    [87] J.G.N. Amissah, W.O. Ellis, I. Oduro, J.T. Manful, Nutrient composition of bran from new rice varieties under study in Ghana, Food Control. 14 (2003) 21–24. https://doi.org/10.1016/S0956-7135(02)00047-6.
    [88] F.D. Goffman, S. Pinson, C. Bergman, Genetic diversity for lipid content and fatty acid profile in rice bran, J. Am. Oil Chem. Soc. 80 (2003) 485–490. https://doi.org/https://doi.org/10.1007/s11746-003-0725-x.
    [89] H. Taira, Lipid Content and Fatty Acid Composition of Nonglutinous and Glutinous Varieties of Foxtail Millet, J. Agric. Food Chem. 32 (1984) 369–371. https://doi.org/10.1021/jf00122a047.
    [90] A. Manickavasagan, S.K. Chandini, N. Venkatachalapathy, Brown rice, Brown Rice. (2017) 1–290. https://doi.org/10.1007/978-3-319-59011-0.
    [91] and F.Z. McCaskill, Don R., Use of rice bran oil in foods: Developing nutraceuticals for the new millenium, Food Technol. 53 (1999) 50–53.
    [92] Y.P. Pal, A.P. Pratap, Rice bran oil: A versatile source for edible and industrial applications, J. Oleo Sci. 66 (2017) 551–556. https://doi.org/10.5650/jos.ess17061.
    [93] F. Mas ’ud, M. Mahendradatta, A. Laga, Z. Zainal, Component, Fatty Acid And Mineral Composition Of Rice Bran Oil Extracted By Multistage With Hexane And Ethanol, Int. J. Sci. Technol. Res. 6 (2017) 63–69. www.ijstr.org.
    [94] S. Zullaikah, C.C. Lai, S.R. Vali, Y.H. Ju, A two-step acid-catalyzed process for the production of biodiesel from rice bran oil, Bioresour. Technol. 96 (2005) 1889–1896. https://doi.org/10.1016/j.biortech.2005.01.028.
    [95] K. Robak, M. Balcerek, Review of second generation bioethanol production from residual biomass, Food Technol. Biotechnol. (2018). https://doi.org/10.17113/ftb.56.02.18.5428.
    [96] F. Shahidi, H. Miraliakbari, Edible Oil & Fat Products: Chemistry, Properties, and Health Effects, 2005. https://doi.org/10.1038/157822a0.
    [97] A.R. Amusan, Optimization of Procedures for Oil Extraction From Animal Tissue, (2008) 102.
    [98] T. Dong, E.P. Knoshaug, P.T. Pienkos, L.M.L. Laurens, Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review, Appl. Energy. (2016). https://doi.org/10.1016/j.apenergy.2016.06.002.
    [99] A. Go, Y.T. Liu, Y.H. Ju, Applicability of Subcritical Water Treatment on Oil Seeds to Enhance Extractable Lipid, Bioenergy Res. (2014). https://doi.org/10.1007/s12155-013-9397-1.
    [100] M.A.M. Ishak, K. Ismail, W.I. Nawawi, A.H. Jawad, A.Y. Ani, Z. Zakaria, In-situ Transesterification of Jatropha curcas L. Seeds for Biodiesel Production using Supercritical Methanol, in: MATEC Web Conf., 2017. https://doi.org/10.1051/matecconf/20179701082.
    [101] P.L. Tran Nguyen, A.W. Go, L.H. Huynh, Y.H. Ju, A study on the mechanism of subcritical water treatment to maximize extractable cellular lipids, Biomass and Bioenergy. 59 (2013) 532–539. https://doi.org/10.1016/j.biombioe.2013.08.031.
    [102] K.G.D. Te, A.W. Go, H.J.D. Wang, R.G. Guevarra, L.K. Cabatingan, I.D.F. Tabañag, A.E. Angkawijaya, Y.H. Ju, Extraction of lipids from post-hydrolysis copra cake with hexane as solvent: Kinetic and equilibrium data, Renew. Energy. (2020). https://doi.org/10.1016/j.renene.2020.05.096.
    [103] J.A. Quintero, L.E. Rincón, C.A. Cardona, Production of bioethanol from agroindustrial residues as feedstocks, in: Biofuels, 2011. https://doi.org/10.1016/B978-0-12-385099-7.00011-5.
    [104] D. Lachos-Perez, A.B. Brown, A. Mudhoo, J. Martinez, M.T. Timko, M.A. Rostagno, T. Forster-Carneiro, Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: A critical review, Biofuel Res. J. (2017). https://doi.org/10.18331/BRJ2017.4.2.6.
    [105] S.B. Hawthorne, C.B. Grabanski, E. Martin, D.J. Miller, Comparisons of Soxhlet extraction, pressurized liquid extraction, supercritical fluid extraction and subcritical water extraction for environmental solids: Recovery, selectivity and effects on sample matrix, J. Chromatogr. A. (2000). https://doi.org/10.1016/S0021-9673(00)00091-1.
    [106] K. Waldron, Advances in Biorefineries: Biomass and Waste Supply Chain Exploitation, 2014. https://doi.org/10.1533/9780857097385.
    [107] U.R. Ezeilo, I.I. Zakaria, F. Huyop, R.A. Wahab, Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases, Biotechnol. Biotechnol. Equip. (2017). https://doi.org/10.1080/13102818.2017.1330124.
    [108] K. Kucharska, P. Rybarczyk, I. Hołowacz, R. Łukajtis, M. Glinka, M. Kamiński, Pretreatment of lignocellulosic materials as substrates for fermentation processes, Molecules. (2018). https://doi.org/10.3390/molecules23112937.
    [109] E.M. Visser, D.L. Falkoski, M.N. de Almeida, G.P. Maitan-Alfenas, V.M. Guimarães, Production and application of an enzyme blend from Chrysoporthe cubensis and Penicillium pinophilum with potential for hydrolysis of sugarcane bagasse, Bioresour. Technol. (2013). https://doi.org/10.1016/j.biortech.2013.07.015.
    [110] P. Lenihan, A. Orozco, E. O’Neill, M.N.M. Ahmad, D.W. Rooney, G.M. Walker, Dilute acid hydrolysis of lignocellulosic biomass, Chem. Eng. J. (2010). https://doi.org/10.1016/j.cej.2009.10.061.
    [111] J.B. Binder, R.T. Raines, Fermentable sugars by chemical hydrolysis of biomass, Proc. Natl. Acad. Sci. U. S. A. (2010). https://doi.org/10.1073/pnas.0912073107.
    [112] S. Lee, Integrated Biorefineries. Design, analysis and optimization, 2013. https://doi.org/10.1016/B978-0-12-409548-9.10138-1.
    [113] Q. Xiang, Y.Y. Lee, P.O. Petterson, R.W. Torget, Heterogeneous aspects of acid hydrolysis of α-cellulose, in: Appl. Biochem. Biotechnol. - Part A Enzym. Eng. Biotechnol., 2003. https://doi.org/10.1385/ABAB:107:1-3:505.
    [114] U. Akula, V. Nanavare, N.R. Bhumireddy, A Review of Methods Used for Seed Oil Extraction, 8 (2017) 1854–1861. https://doi.org/10.21275/1121804.
    [115] B.J.. Hudson, Lipids in foods. Chemistry, biochemistry and technology, 1984. https://doi.org/10.1016/0160-9327(84)90139-x.
    [116] P.C. Bargale, MECHANICAL OIL EXPRESSION FROM SELECTED OILSEEDS UNDER UNUXUL COMPRESSION, J. AgricuItural Eng. Res. (1997).
    [117] E. Booth, Extracting and Refining, in: Rapeseed Canola Oil Prod. Process. Prop. Uses, 2004.
    [118] G.F.Y. Juarez, K.B.C. Pabiloña, K.B.L. Manlangit, A.W. Go, Direct Dilute Acid Hydrolysis of Spent Coffee Grounds: A New Approach in Sugar and Lipid Recovery, Waste and Biomass Valorization. 9 (2018) 235–246. https://doi.org/10.1007/s12649-016-9813-9.
    [119] J.A.A.M. Kamimura, K.K. Aracava, C.E.C. Rodrigues, Experimental data and modeling of rice bran oil extraction kinetics using ethanol as solvent, Sep. Sci. Technol. 52 (2017) 1921–1928. https://doi.org/10.1080/01496395.2017.1307224.
    [120] V. Najdanovic-Visak, F.Y.L. Lee, M.T. Tavares, A. Armstrong, Kinetics of extraction and in situ transesterification of oils from spent coffee grounds, J. Environ. Chem. Eng. 5 (2017) 2611–2616. https://doi.org/10.1016/j.jece.2017.04.041.
    [121] S. SAITTAGAROON, S. KAWAKISHI, M. NAMIKI, Generation of Mannitol from Copra Meal, J. Food Sci. 50 (1985) 757–760. https://doi.org/10.1111/j.1365-2621.1985.tb13790.x.
    [122] T. Thongsook, S. Chaijamrus, Modification of physiochemical properties of copra meal by dilute acid hydrolysis, Int. J. Food Sci. Technol. (2014). https://doi.org/10.1111/ijfs.12440.
    [123] A.L. Macedo, R.S. Santos, L. Pantoja, A.S. Santos, Pequi cake composition, hydrolysis and fermentation to bioethanol, in: Brazilian J. Chem. Eng., 2011. https://doi.org/10.1590/S0104-66322011000100002.
    [124] M.A. Rostagno, J.M. Prado, A. Mudhoo, D.T. Santos, T. Forster-Carneiro, M.A.A. Meireles, Subcritical and supercritical technology for the production of second generation bioethanol, Crit. Rev. Biotechnol. (2015). https://doi.org/10.3109/07388551.2013.843155.
    [125] S.P. Fan, L.Q. Jiang, C.H. Chia, Z. Fang, S. Zakaria, K.L. Chee, High yield production of sugars from deproteinated palm kernel cake under microwave irradiation via dilute sulfuric acid hydrolysis, Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2013.11.055.
    [126] D.E. Luján-Rhenals, R.O. Morawicki, Production of Fermentable Sugars and a High Protein Meal by Dilute Acid Hydrolysis of Soybean Meal at High Temperatures, BioResources. (2016). https://doi.org/10.15376/biores.11.4.8155-8165.
    [127] A.W. Go, S. Sutanto, S. Zullaikah, S. Ismadji, Y.-H. Ju, A new approach in maximizing and direct utilization of whole Jatropha curcas L. kernels in biodiesel production – Technological improvement, Renew. Energy. 85 (2016) 759–765. https://doi.org/https://doi.org/10.1016/j.renene.2015.06.073.
    [128] R. Savoire, J.L. Lanoisellé, E. Vorobiev, Mechanical Continuous Oil Expression from Oilseeds: A Review, Food Bioprocess Technol. 6 (2013) 1–16. https://doi.org/10.1007/s11947-012-0947-x.
    [129] L.K. Sinha, S. Haldar, G.C. Majumdar, Effect of operating parameters on mechanical expression of solvent-soaked soybean-grits, J. Food Sci. Technol. 52 (2015) 2942–2949. https://doi.org/10.1007/s13197-014-1340-8.
    [130] F. Bux, D. Ramesh, Lipid Identification and Extraction Techniques, Biotechnol. Appl. Microalgae. (2013) 89–98. https://doi.org/10.1201/b14920-8.
    [131] M.E. Carrín, G.H. Crapiste, Mathematical modeling of vegetable oil-solvent extraction in a multistage horizontal extractor, J. Food Eng. 85 (2008) 418–425. https://doi.org/10.1016/j.jfoodeng.2007.08.003.
    [132] E.R. Baümler, A.A. Carelli, G.H. Crapiste, M.E. Carrín, Solvent extraction modeling of vegetable oil and its minor compounds, J. Food Eng. 107 (2011) 186–194. https://doi.org/10.1016/j.jfoodeng.2011.06.025.
    [133] R. Dutta, U. Sarkar, A. Mukherjee, Soxhlet Extraction of Crotalaria Juncea Oil Using Cylindrical and Annular Packed Beds, Int. J. Chem. Eng. Appl. 6 (2015) 130–133. https://doi.org/10.7763/ijcea.2015.v6.466.
    [134] F. Shahidi, Extraction And Measurement Of Total Lipids, Handb. Food Anal. Chem. 1–2 (2005) 425–435. https://doi.org/10.1002/0471709085.ch12.
    [135] D.B. Nde, A.C. Foncha, Optimization methods for the extraction of vegetable oils: A review, Processes. 8 (2020). https://doi.org/10.3390/pr8020209.
    [136] G. Knothe, Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters, Fuel Process. Technol. 86 (2005) 1059–1070. https://doi.org/10.1016/j.fuproc.2004.11.002.
    [137] E. Reverchon, I. De Marco, Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluids. (2006). https://doi.org/10.1016/j.supflu.2006.03.020.
    [138] Y. Li, F. Fine, A.S. Fabiano-Tixier, M. Abert-Vian, P. Carre, X. Pages, F. Chemat, Evaluation of alternative solvents for improvement of oil extraction from rapeseeds, Comptes Rendus Chim. 17 (2014) 242–251. https://doi.org/10.1016/j.crci.2013.09.002.
    [139] U.C. Lohani, P. Fallahi, K. Muthukumarappan, Comparison of ethyl acetate with hexane for oil extraction from various oilseeds, JAOCS, J. Am. Oil Chem. Soc. 92 (2015) 743–754. https://doi.org/10.1007/s11746-015-2644-1.
    [140] I. Efthymiopoulos, P. Hellier, N. Ladommatos, A. Kay, B. Mills-Lamptey, Integrated strategies for water removal and lipid extraction from coffee industry residues, Sustain. Energy Technol. Assessments. 29 (2018) 26–35. https://doi.org/10.1016/j.seta.2018.06.016.
    [141] A.A. Jesus, L.C. Almeida, E.A. Silva, L.C. Filho, S.M.S. Egues, E. Franceschi, M. Fortuny, A.F. Santos, J. Araujo, E.M.B.D. Sousa, C. Dariva, Extraction of palm oil using propane, ethanol and its mixtures as compressed solvent, J. Supercrit. Fluids. 81 (2013) 245–253. https://doi.org/10.1016/j.supflu.2013.06.011.
    [142] F. Gunstone, Rapeseed and Canola Oil: Production, Processing, Properties and Uses, CRC Press, 2009. https://doi.org/10.1016/j.biomaterials.2012.02.025.
    [143] L.A. Johnson, E.W. Lusas, Comparison of alternative solvents for oils extraction, J. Am. Oil Chem. Soc. 60 (1983) 229–242. https://doi.org/10.1007/BF02543490.
    [144] A.G. Sicaire, M. Vian, F. Fine, F. Joffre, P. Carré, S. Tostain, F. Chemat, Alternative bio-based solvents for extraction of fat and oils: Solubility prediction, global yield, extraction kinetics, chemical composition and cost of manufacturing, Int. J. Mol. Sci. 16 (2015) 8430–8453. https://doi.org/10.3390/ijms16048430.
    [145] C.C. Akoh, Handbook of Functional Lipids, CRC Press, 2005.
    [146] KerbalaUniversity, Factors Affecting the Extraction Process of Oil- bearing flakes of Sunflower , Cotton and Soybean seeds, J. Kerbala Univ. (2010).
    [147] O.. Lawson, A. Oyewumi, F.. Ologunagba, A.O. Ojomo, Evaluation of the Parameters Affecting the Solvent, APRN J. Eng. Appl. Sci. 5 (2010) 51–55.
    [148] J.R. Lajara, Solvent extraction of oil from oilseeds: the real basics, in: World Conf. Proceeding Edible Fats Oils Process. Basic Princ. Mod. Pract. USA, 1990: pp. 49–55.
    [149] M. Ali, I.A. Watson, Comparison of oil extraction methods, energy analysis and biodiesel production from flax seeds, Int. J. Energy Res. (2014). https://doi.org/10.1002/er.3066.
    [150] T. Varzakas, C. Tzia, Handbook of food processing: Food safety, quality, and manufacturing processes, 2015. https://doi.org/10.1201/b19398.
    [151] T. Varzakas, C. Tzia, Handbook of Food Processing: Food Safety, Quality, and Manufacturing Processes, Taylor & Francis, 2015.
    [152] S. Sayyar, Z.Z. Abidin, R. Yunus, A. Muhammad, Extraction of oil from Jatropha seeds-optimization and kinetics, Am. J. Appl. Sci. 6 (2009) 1390–1395. https://doi.org/10.3844/ajassp.2009.1390.1395.
    [153] A. Bulent, M. Abdullah, M. Fereidouni, Soybeans Processing for Biodiesel Production, Soybean - Appl. Technol. (2011). https://doi.org/10.5772/14216.
    [154] E. Pichai, S. Krit, Optimization of solid-to-solvent ratio and time for oil extraction process from spent coffee grounds using response surface methodology, ARPN J. Eng. Appl. Sci. 10 (2015) 7049–7052.
    [155] M. Jalilvand, H. Kamali, A. Nematollahi, Pressurized fluid extraction of rice bran oil using a modified supercritical fluid extractor and a central composite design for optimization, J. Liq. Chromatogr. Relat. Technol. (2013). https://doi.org/10.1080/10826076.2012.692152.
    [156] A. Sheibani, H.S. Ghaziaskar, Pressurized fluid extraction of pistachio oil using a modified supercritical fluid extractor and factorial design for optimization, LWT - Food Sci. Technol. (2008). https://doi.org/10.1016/j.lwt.2007.09.002.
    [157] V. Camel, Recent extraction techniques for solid matrices - Supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: Their potential and pitfalls, Analyst. 126 (2001) 1182–1193. https://doi.org/10.1039/b008243k.
    [158] B. Kaufmann, P. Christen, Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction, Phytochem. Anal. (2002). https://doi.org/10.1002/pca.631.
    [159] B.E. Richter, B.A. Jones, J.L. Ezzell, N.L. Porter, N. Avdalovic, C. Pohl, Accelerated solvent extraction: A technique for sample preparation, Anal. Chem. (1996). https://doi.org/10.1021/ac9508199.
    [160] L. Yao, K.M. Schaich, Accelerated Solvent Extraction Improves Efficiency of Lipid Removal from Dry Pet Food While Limiting Lipid Oxidation, J. Am. Oil Chem. Soc. (2015). https://doi.org/10.1007/s11746-014-2568-1.
    [161] A. Zuorro, R. Lavecchia, Spent coffee grounds as a valuable source of phenolic compounds and bioenergy, J. Clean. Prod. 34 (2012) 49–56. https://doi.org/10.1016/j.jclepro.2011.12.003.
    [162] P.J. Quinn, Effects of temperature on cell membranes., Symp. Soc. Exp. Biol. (1988).
    [163] N.S. Caetano, V.F.M. Silva, A.C. Melo, A.A. Martins, T.M. Mata, Spent coffee grounds for biodiesel production and other applications, Clean Technol. Environ. Policy. 16 (2014) 1423–1430. https://doi.org/10.1007/s10098-014-0773-0.
    [164] M. Haile, Integrated volarization of spent coffee grounds to biofuels, Biofuel Res. J. 1 (2014) 65–69. https://doi.org/10.18331/BRJ2015.1.2.6.
    [165] E. Kwon, H. Yi, Y. Jeon, Sequential Co-production of biodiesel and bioethanol with spent coffee grounds, 2013. https://doi.org/10.1016/j.biortech.2013.03.052.
    [166] M. Haile, A. Asfaw, N. Asfaw, Investigation of waste coffee ground as a potential raw material for biodiesel production, Int. J. Renew. Energy Res. (2013). https://doi.org/10.20508/ijrer.23113.
    [167] A. Deligiannis, A. Papazafeiropoulou, G. Anastopoulos, F. Zannikos, Waste Coffee Grounds as an Energy Feedstock, Proceeding 3rd Int. CEMEPE SECOTOX Conf. (2011).
    [168] N. Kondamudi, S.K. Mohapatra, M. Misra, Spent coffee grounds as a versatile source of green energy, J. Agric. Food Chem. (2008). https://doi.org/10.1021/jf802487s.
    [169] R.C.A. Lago, R. Antoniassi, S.C. Freitas, Centesimal composition and amino acids of raw, roasted and spent ground of soluble coffee, in: II Simpósio Pesqui. Dos Cafés Do Bras. Vitoria, 2001.
    [170] L.M. Harwood, C.J. Moody, J.M. Percy, Experimental organic chemistry : standard and microscale, Exp. Org. Chem. Stand. Microscale. (1998).
    [171] B. Ahangari, J. Sargolzaei, Extraction of lipids from spent coffee grounds using organic solvents and supercritical carbon dioxide, J. Food Process. Preserv. (2013). https://doi.org/10.1111/j.1745-4549.2012.00757.x.
    [172] M.V.P. Rocha, L.J.B.L. de Matos, L.P. de Lima, P.M. da S. Figueiredo, I.L. Lucena, F.A.N. Fernandes, L.R.B. Gonçalves, Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds, Bioresour. Technol. (2014). https://doi.org/10.1016/j.biortech.2014.06.032.
    [173] M. Abdullah, A. Bulent Koc, Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication, Renew. Energy. (2013). https://doi.org/10.1016/j.renene.2012.08.073.
    [174] R. Oliveira, G.R. Carvalho, M. Cirillo, F. Queiroz, Effect of ecofriendly bio-based solvents on oil extraction from green coffee bean and its industrial press cake, Brazilian J. Chem. Eng. (2019). https://doi.org/10.1590/0104-6632.20190364s20190102.
    [175] A. Patricelli, A. Assogna, A. Casalaina, E. Emmi, G. Sodini, Factors affecting the extraction of lipids from sunflower defatted seeds [Fattori che influenzano l’estrazione dei lipidi da semi decorticati di girasole], La Riv. Ital. Delle Sostanze Grasse. (1979) 136–142.
    [176] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel. 96 (2012) 70–76. https://doi.org/10.1016/j.fuel.2012.01.023.
    [177] N.S. Caetano, V.F. Silva, T.M. Mata, Valorization of Coffee Grounds for Biodiesel Production, Ital. Assoc. Chem. Eng. 26 (2012) 135–192. https://doi.org/10.3303/CET1226045.
    [178] D. Sparks, R. Hernandez, M. Zappi, D. Blackwell, T. Fleming, Extraction of rice bran oil using supercritical carbon dioxide and propane, JAOCS, J. Am. Oil Chem. Soc. (2006). https://doi.org/10.1007/s11746-006-5042-x.
    [179] R. Oliveira, V. Oliveira, K.K. Aracava, C.E.D.C. Rodrigues, Effects of the extraction conditions on the yield and composition of rice bran oil extracted with ethanol - A response surface approach, Food Bioprod. Process. (2012). https://doi.org/10.1016/j.fbp.2011.01.004.
    [180] W. Hu, J.H. Wells, T.S. Shin, J.S. Godber, Comparison of isopropanol and hexane for extraction of vitamin E and oryzanols from stabilized rice bran, JAOCS, J. Am. Oil Chem. Soc. (1996). https://doi.org/10.1007/BF02517967.
    [181] I.G. Zigoneanu, L. Williams, Z. Xu, C.M. Sabliov, Determination of antioxidant components in rice bran oil extracted by microwave-assisted method, Bioresour. Technol. (2008). https://doi.org/10.1016/j.biortech.2007.09.067.
    [182] S.Y. Al-Okbi, D.A. Mohamed, T.E. Hamed, R.S.H. Esmail, Rice bran oil and pumpkin seed oil alleviate oxidative injury and fatty liver in rats fed high fructose diet, Polish J. Food Nutr. Sci. 64 (2014) 127–133. https://doi.org/10.2478/pjfns-2013-0002.
    [183] F. Zaccheria, M. Mariani, N. Ravasio, The use of rice bran oil within a biorefinery concept, Chem. Biol. Technol. Agric. (2015). https://doi.org/10.1186/s40538-015-0049-x.
    [184] M.M. Aji, B. Gutti, B.K. Highina, S.A. Kyari, Soxhlet Extraction and Characterization of Oil From Schweinfurthii ( Black Date ) Fruits for Domestic Purpose, Appl. Res. J. (2015).
    [185] P. Imsanguan, A. Roaysubtawee, R. Borirak, S. Pongamphai, S. Douglas, P.L. Douglas, Extraction of α-tocopherol and γ-oryzanol from rice bran, LWT - Food Sci. Technol. (2008). https://doi.org/10.1016/j.lwt.2007.08.028.
    [186] A. Mariod, M. Ismail, N.F. Abd Rahman, B. Matthaus, Stability of rice bran oil extracted by SFE and soxhlet methods during accelerated shelf-life storage, Grasas y Aceites. (2014). https://doi.org/10.3989/gya.109413.
    [187] P. Loypimai, A. Moongngarm, P. Chottanom, Impact of stabilization and extraction methods on chemical quality and bioactive compounds of rice bran oil, Emirates J. Food Agric. (2015). https://doi.org/10.9755/ejfa.2015-09-738.
    [188] N. Pengkumsri, C. Chaiyasut, B.S. Sivamaruthi, C. Saenjum, S. Sirilun, S. Peerajan, P. Suwannalert, S. Sirisattha, K. Chaiyasut, P. Kesika, The influence of extraction methods on composition and antioxidant properties of rice bran oil, Food Sci. Technol. (2015). https://doi.org/10.1590/1678-457X.6730.
    [189] A. Proctor, D.J. Bowen, Ambient-temperature extraction of rice bran oil with hexane and isopropanol, JAOCS, J. Am. Oil Chem. Soc. (1996). https://doi.org/10.1007/BF02517960.
    [190] H.M. Liu, F.Y. Wang, H.Y. Li, X. De Wang, G.Y. Qin, Subcritical butane and propane extraction of oil from rice bran, BioResources. 10 (2015) 4652–4662. https://doi.org/10.15376/biores.10.3.4652-4662.
    [191] T.Y. Chiou, T.L. Neoh, T. Kobayashi, S. Adachi, Antioxidative Ability of Defatted Rice Bran Extract Obtained by Subcritical Water Extraction in Bulk Oil and Aqueous Dispersion Systems, Japan J. Food Eng. (2010). https://doi.org/10.11301/jsfe.12.147.
    [192] H. Yoshida, S. Izhar, E. Nishio, Y. Utsumi, N. Kakimori, S. Asghari Feridoun, Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water, Sol. Energy Mater. Sol. Cells. (2014). https://doi.org/10.1016/j.solmat.2014.02.009.
    [193] J. Zúñiga-Diaz, E. Reyes-Dorantes, A. Quinto-Hernandez, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Oil extraction from “Morelos Rice” bran: Kinetics and raw oil stability, J. Chem. (2017). https://doi.org/10.1155/2017/3837506.
    [194] S. Sutanto, A.W. Go, K.H. Chen, P.L.T. Nguyen, S. Ismadji, Y.H. Ju, Release of sugar by acid hydrolysis from rice bran for single cell oil production and subsequent in-situ transesterification for biodiesel preparation, Fuel Process. Technol. (2017). https://doi.org/10.1016/j.fuproc.2017.07.014.
    [195] S. Sutanto, A.W. Go, K.H. Chen, S. Ismadji, Y.H. Ju, Maximized Utilization of Raw Rice Bran in Microbial Oils Production and Recovery of Active Compounds: A proof of concept, Waste and Biomass Valorization. 8 (2017) 1067–1080. https://doi.org/10.1007/s12649-016-9685-z.
    [196] M. Khoei, F. Chekin, The ultrasound-assisted aqueous extraction of rice bran oil, Food Chem. (2016). https://doi.org/10.1016/j.foodchem.2015.08.068.
    [197] A. Fick, Ueber Diffusion, Ann. Phys. (1855). https://doi.org/10.1002/andp.18551700105.
    [198] J. Crank, The mathematics of diffusion, 2d ed., Clarendon Press, 1975.
    [199] S. Meziane, H. Kadi, Kinetics and thermodynamics of oil extraction from olive cake, JAOCS, J. Am. Oil Chem. Soc. (2008). https://doi.org/10.1007/s11746-008-1205-2.
    [200] A. Bucić-Kojić, M. Planinić, S. Tomas, M. Bilić, D. Velić, Study of solid-liquid extraction kinetics of total polyphenols from grape seeds, J. Food Eng. 81 (2007) 236–242. https://doi.org/10.1016/j.jfoodeng.2006.10.027.
    [201] A.R. Linares, S.L. Hase, M.L. Vergara, S.L. Resnik, Modeling yerba mate aqueous extraction kinetics: Influence of temperature, J. Food Eng. 97 (2010) 471–477. https://doi.org/10.1016/j.jfoodeng.2009.11.003.
    [202] J.T. Nwabanne, Kinetics and Thermodynamics Study of Oil Extraction from Fluted Pumpkin Seed, Int. J. Multidiscip. Sci. Eng. (2012).
    [203] S. Sulaiman, A.R. Abdul Aziz, M. Kheireddine Aroua, Optimization and modeling of extraction of solid coconut waste oil, J. Food Eng. 114 (2013) 228–234. https://doi.org/https://doi.org/10.1016/j.jfoodeng.2012.08.025.
    [204] D.K. Saxena, S.K. Sharma, S.S. Sambi, Kinetics and thermodynamics of cottonseed oil extraction, Grasas y Aceites. (2011). https://doi.org/10.3989/gya.090210.
    [205] S. Meziane, H. Kadi, Kinetics and thermodynamics of oil extraction from olive cake, JAOCS, J. Am. Oil Chem. Soc. 85 (2008) 391–396. https://doi.org/10.1007/s11746-008-1205-2.
    [206] M.D. Kostić, N.M. Joković, O.S. Stamenković, K.M. Rajković, P.S. Milić, V.B. Veljković, The kinetics and thermodynamics of hempseed oil extraction by n-hexane, Ind. Crops Prod. (2014). https://doi.org/10.1016/j.indcrop.2013.11.045.
    [207] A.C.M.A. Araújo, É. Resende de Oliveira, E.G.T. Menezes, B.O. Dias, A.W.C. Terra, F. Queiroz, Solvent effect on the extraction of soluble solids from murici and pequi seeds, J. Food Process Eng. (2018). https://doi.org/10.1111/jfpe.12813.
    [208] M. Cooney, G. Young, N. Nagle, Extraction of bio-oils from microalgae, Sep. Purif. Rev. (2009). https://doi.org/10.1080/15422110903327919.
    [209] C.E.C. Rodrigues, K.K. Aracava, F.N. Abreu, Thermodynamic and statistical analysis of soybean oil extraction process using renewable solvent, Int. J. Food Sci. Technol. (2010). https://doi.org/10.1111/j.1365-2621.2010.02417.x.
    [210] L.P. Aquino, F.Q. Ferrua, S.V. Borges, R. Antoniassi, J.L.G. Correa, M.A. Cirillo, Influence of pequi drying (Caryocar brasiliense Camb.) on the quality of the oil extracted, Cienc. e Tecnol. Aliment. (2009). https://doi.org/10.1590/S0101-20612009000200018.
    [211] M.Y. Liauw, F. a Natan, P. Widiyanti, D. Ikasari, N. Indraswati, F.E. Soetaredjo, EXTRACTION OF NEEM OIL ( A zadirachta indica A . Juss ) USING N-HEXANE AND ETHANOL : STUDIES OF OIL QUALITY , KINETIC AND THERMODYNAMIC, 3 (2008) 49–54.
    [212] C.H. Kadurumba, C.C. Orakwue, C.M. Agu, Kinetics, thermodynamics and process parameter impact on solvent extraction of oil from Colocynthis vulgaris Shrad (melon) seeds , J. Chinese Adv. Mater. Soc. (2018). https://doi.org/10.1080/22243682.2018.1445978.
    [213] H. Topallar, U. Gecgel, Kinetics and Thermodynamics of Oil Extraction from Sunflower Seeds in the Presence of Aqueous Acidic Hexane Solutions, Turk J. Chem. 24 (2000) 247–253.
    [214] M. Rhodes, Particle Size Analysis, in: Introd. to Part. Technol., 2008: pp. 1–27. https://doi.org/10.1002/9780470727102.ch1.
    [215] AACC Approved Methods of Analysis, AACCI Method 30-25.01, Crude Fat in Wheat, Corn, and Soy Flour, Feeds, and Mixed Feeds, in: AACC Int. Approv. Methods, 11th ed., Cereals & Grains Association, St. Paul, MN, U.S.A., 2009. https://doi.org/10.1094/AACCIntMethod-30-25.01.
    [216] A.. Go, S. Sutanto, S. Ismadji, Y.. Ju, Catalyst free production of partial glycerides: acetone as solvent, RSC Adv. 5 (2015) 30833–30840. https://doi.org/10.1039/c5ra03249k.
    [217] AOAC, 18th, Official methods of analysis of AOAC International, AOAC International, 2005.
    [218] G.C. So, D.G. Macdonald, Kinetics of oil extraction from canola (rapeseed), Can. J. Chem. Eng. 64 (1986) 80–86. https://doi.org/10.1002/cjce.5450640112.
    [219] B.M.W.P.K. Amarasinghe, N.C. Gangodavilage, Rice Bran Oil Extraction in Sri Lanka: Data for Process Equipment Design, Food Bioprod. Process. 82 (2004) 54–59. https://doi.org/https://doi.org/10.1205/096030804322985326.
    [220] S. Sutanto, A.W. Go, S. Ismadji, Y.-H. Ju, Hydrolyzed rice bran as source of lipids and solid acid catalyst during in situ (trans)esterification, Biofuels. (2017). https://doi.org/10.1080/17597269.2017.1348190.
    [221] B. Wieselburg, W. Korbitz, H. Prankl, M. Mittelbach, M. Worgetter, Review on Biodiesel Standardization World-wide, IEA Bioenergy. (2004).
    [222] L.F. Ramírez-Verduzco, J.E. Rodríguez-Rodríguez, A.D.R. Jaramillo-Jacob, Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition, Fuel. 91 (2012) 102–111. https://doi.org/10.1016/j.fuel.2011.06.070.
    [223] G. Knothe, Structure indices in FA chemistry. How relevant is the iodine value?, J. Am. Oil Chem. Soc. 79 (2002) 847–854. https://doi.org/10.1007/s11746-002-0569-4.
    [224] M.J. Ramos, C.M. Fernández, A. Casas, L. Rodríguez, Á. Pérez, Influence of fatty acid composition of raw materials on biodiesel properties, Bioresour. Technol. 100 (2009) 261–268. https://doi.org/10.1016/j.biortech.2008.06.039.
    [225] A. Sarin, R. Arora, N.P. Singh, R. Sarin, R.K. Malhotra, K. Kundu, Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point, Energy. 34 (2009) 2016–2021. https://doi.org/10.1016/j.energy.2009.08.017.
    [226] J. Zúñiga-Diaz, E. Reyes-Dorantes, A. Quinto-Hernandez, J. Porcayo-Calderon, J.G. Gonzalez-Rodriguez, L. Martinez-Gomez, Oil Extraction from “Morelos Rice” Bran: Kinetics and Raw Oil Stability, J. Chem. 2017 (2017) 1–9. https://doi.org/10.1155/2017/3837506.
    [227] C. Mueanmas, R. Nikhom, A. Petchkaew, J. Iewkittayakorn, K. Prasertsit, Extraction and esterification of waste coffee grounds oil as non-edible feedstock for biodiesel production, Renew. Energy. 133 (2019) 1414–1425. https://doi.org/10.1016/j.renene.2018.08.102.

    無法下載圖示 全文公開日期 2025/08/14 (校內網路)
    全文公開日期 2025/08/14 (校外網路)
    全文公開日期 2025/08/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE