簡易檢索 / 詳目顯示

研究生: 游任鈞
Jen-Chun Yu
論文名稱: 鎂摻雜改質程序對於鐵鋁載氧體運用於化學迴路燃燒程序之可行性評估
Feasibility Evaluation of Mg-modified Fe2O3/Al2O3 as Oxygen Carrier for Chemical Looping Combustion Process
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 顧洋
Young Ku
曾堯宣
Yao-Hsuan Tseng
李豪業
Hao-Yeh Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 鎂摻雜改質鐵基載氧體化學迴路燃燒程序。
外文關鍵詞: Mg-modified, Fe-based oxygen carriers, Chemical Looping Combustion Process
相關次數: 點閱:594下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化學迴路燃燒程序被美國能源署認為是一個極具發展潛力之二氧化碳捕捉技術,此技術不需耗費大量成本與能源就可以把二氧化碳分離、捕捉封存再利用。其中,載氧體在化學迴路燃燒程序中扮演著一個很重要的角色,為影響整個系統反應是否能夠連續操作的關鍵所在。
本研究以鐵基載氧體搭配氧化鋁惰性擔體做為基礎載氧體,接著進行二價金屬鎂的摻雜改質程序,首先探討鎂摻雜改質順序對於載氧體特性之影響,利用X光繞射儀鑑定材料成分與結構、場發射掃描式電子顯微鏡觀察粉體之表面形貌、比表面積分析儀測材料之比表面積以及使用熱重分析儀測試所製備載氧體之反應性與多圈循環迴圈之穩定性,評估載氧體於化學迴路燃燒程序系統中之適用性。結果顯示,將二價金屬鎂先針對氧化鐵進行摻雜改質程序隨後再添加氧化鋁惰性擔體之載氧體,於還原氧化迴圈後表面形貌有特殊的筍狀結構進而提升其孔隙度與反應面積,故具有高反應性及熱穩定性佳之載氧體。
隨後進行鎂摻雜改質濃度對於載氧體反應性、穩定性及二氧化碳轉化率測試,結果顯示,摻雜改質15 mole%時的載氧體可以兼具良好的熱穩定性及維持高的二氧化碳轉化率。因為載氧體在反應過程中會產生筍狀結構使載氧體團聚現象降低,因此降低載氧體惰性擔體的使用量,結果顯示,鐵基載氧體在進行鎂摻雜改質後即使不加入惰性擔體也可維持良好的多圈還原-氧化反應之性能,並且擁有良好的二氧化碳轉化率。因此使用鎂摻雜改質製備之鐵基載氧體運用於化學迴路燃燒程序中將非常具有潛力。


Chemical looping combustion (CLC) process has been recognized as a promising technology of carbon dioxide (CO2) captured by International Energy Agency (IEA). This technology is involved of capture, separation and utilization CO2 gas without high cost and resources. However, oxygen carriers play an important role in the CLC process and the performance is a key issue for the application of CLC process. In general, both the reactivity and CO2 conversion of oxygen carriers are accordingly investigated by using TGA and lab-scale semi-fluidized bed reactor.
In this study, the preparation routes of Fe2O3/Al2O3 based oxygen carriers modified by magnesium (Mg) via wet impregnation method are discussed. The crystalline phases of the powder were identified by X-ray diffraction (XRD), and specific surface area was measured by Brunauer-Emmett-Teller (BET). Surface morphology of powder was analyzed with Field-Emission Scanning Electron Microscopy (FE-SEM) and the mechanism of reduction behavior was determined by Thermogravimetric Analyzer (TGA). The reaction reactivity and thermal stability is found to be strongly depended on the bamboo shoot shape formed with the order of F10M-A > FA10M > A10M-F > FA32.
The concentration of Mg-doping with the oxygen carrier is also investigated. According to the result, F15M shows excellent thermal stability and high CO2 conversion in TGA and lab-scale semi-fluidized bed reactor, respectively. Furthermore, Mg-modified oxygen carrier without alumina inert support formed bamboo shoot shape shows excellent thermal stability in the redox cycling reaction. Therefore, oxygen carriers modified by magnesium nitrate demonstrates a great feasibility and high redox cycling behaviors in chemical looping combustion process.

中文摘要 I 英文摘要 II 致謝 III 目錄 IV 圖索引 VI 表索引 XI 第一章 緒論 1.1 前言 1 1.2 研究動機與目的 3 第二章 文獻回顧 2.1 化學迴路燃燒程序 5 2.2 載氧體的選擇與特性 7 2.3 常見各式載氧體特性 12 2.3.1 鐵基載氧體 12 2.3.2 銅基載氧體 19 2.3.3 鎳基載氧體 22 2.3.4 錳基載氧體 25 2.4 金屬摻雜改質鐵基載氧體 27 2.5 反應器的設計與種類 32 2.6 燃料的研究 35 2.6.1 氣態燃料運用於化學迴圈燃燒程序 36 2.6.2 固態燃料運用於化學迴圈燃燒程序 41 第三章 實驗設備與程序 3.1 實驗藥品 46 3.2 實驗設備與分析儀器 47 3.3 材料製備 52 第四章 結果與討論 4.1以濕式含浸法製備不同鎂摻雜改質順序之鐵鋁載氧體 55 4.1.1 不同鎂摻雜改質順序鐵鋁載氧體之材料分析 56 4.1.2 不同鎂摻雜改質順序鐵鋁載氧體之熱穩定性分析 59 4.2 不同鎂摻雜改質濃度對鐵鋁載氧體之影響 67 4.2.1 不同摻雜改質濃度載氧體之材料分析 67 4.2.2 不同鎂摻雜改質濃度載氧體之熱穩定性分析 70 4.2.3 不同鎂摻雜改質濃度載氧體對二氧化碳轉化率影響 76 4.3 鎂摻雜改質載氧體反應動力式 83 4.3.1 原始F15M-A載氧體反應動力式 84 4.3.2 激活後F15M-A載氧體反應動力式 87 4.4 不同惰性擔體比例影響 91 4.4.1 不同比例惰性擔體反應性測試 91 4.4.2 純鎂摻雜改質鐵基載氧體應用於單床式流體化床 95 第五章 結論與未來展望 5.1 不同鎂摻雜改質順序載氧體 99 5.2 不同鎂摻雜改質濃度載氧體 99 5.3 鎂摻雜改質載氧體反應動力式 100 5.4 不同惰性擔體比例 100 5.5 未來展望 101 第六章 參考文獻

1. The ultimate objective of Convention [京都議定書第二款:目標](2008).
2. IPCC Climate Change 2007: Synthesis Report(2007).
3. 經濟部 確保核安 穩健減核 http://anuclear-safety.twenergy.org.tw/.
4. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, “Advances in CO2 Capture Technology-The U.S. Department of Energy’s Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, Vol. 2, pp. 9-20 (2008).
5. National Energy Technology Laboratory, “DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap” pp. 41 (2010).
6. H. J. Richter, K. F. Knoche, “Reversibility of Combustion Process, Efficiency and Costing,” ACS Symposium Series, Vol. 235, pp. 71-85 (1983).
7. M. M. Hossain, H. I. de Lasa, “Chemical-looping combustion (CLC) for inherent CO2 separations - a review,” Chemical Engineering Science, Vol. 63, pp. 4433-4451. (2008).
8. R. Naqvi, O. Bolland, “Multi-stage chemical looping combustion (CLC) for combined cycles with CO2 capture,” International Journal of Greenhouse Gas Control, Vol. 1, pp. 19–30 (2007).
9. R. Naqvi, Wolf, Jens, O. Bolland, “Part-load analysis of a chemical looping combustion (CLC) combined cycle with CO2 capture,” Energy, Vol. 32, pp. 360–370 (2007).
10. J. Wolf, J. Yan, “Parametric study of chemical looping combustion for trigeneration of hydrogen, heat, and electrical power with CO2 capture,” International Journal of Energy Research, Vol. 29, pp. 739–753 (2005).
11. M. Anheden, G. Svedberg, “Exergy analysis of chemical-looping combustion systems,” Energy Conversion and Management, Vol. 39, pp. 1967–1980 (1998).
12. J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L. F. de Diego, “Progress in Chemical-Looping Combustion and Reforming technologies,” Progress in Energy and Combustion Science, Vol. 38, pp. 215–282 (2012).
13. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, “Mapping of the range of operational conditions for Cu-, Fe-, and Ni-basedoxygen carriers in chemical-looping combustion,” Chemical Engineering Science, Vol. 62, pp. 533–549 (2007).
14. E. Jerndal, T. Mattisson, A. Lyngfelt, “Thermal analysis of chemical-looping combustion,” Chemical Engineering Research and Design, Vol. 84, pp. 795–806 (2006).
15. A. Lyngfelt , B. Leckner, T. Mattisson “A fuidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion,” Chemical Engineering Science, Vol. 56, pp. 3101–3113 (2001)
16. E. Jerndal, T. Mattisson, A. Lyngfelt “Thermal Analysis of Chemical-Looping Combustion,” Chemical Engineering Research and Design, Vol. 84, pp. 795-806 (2006).
17. M. R. Quddus “A Novel Mixed Metallic Oxygen Carrier for Chemical Looping Combustion: Preparation, Characterization and Kinetic Modeling,” The University of Western Ontario (2013).
18. Mineral commodity summaries. U.S. Geological Survey, ISBN 978-1-4113-2666-8 (2010).
19. A. Lyngfelt, B. Leckner, T. Mattisson, “A Fluidized-Bed Combustion Process with Inherent CO2 Separation; Application of Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 56, pp. 3101-3113 (2001).
20. T. Mattisson, Q. Zafar, M. Johansson, A. Lyngfelt, “Chemical-Looping Combustion as a New CO2 Management Technology,” First Regional Symposium on Carbon Management, May 22-24 (2006).
21. B. Kronberger, E. Johansson, G. Löffler, T. Mattisson, A. Lyngfelt, H. Hofbauer, “A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical Looping Combustion,” Chemical Engineering Technology, Vol. 27, pp. 1318-1326 (2004).
22. B. Kronberger, A. Lyngfelt, G. Löffler, H. Hofbauer, “Design and Fluid Dynamic Analysis of a Bench-Scale Combustion System with CO2 Separation-Chemical Looping Combustion, “Industrial & Engineering Chemistry Research, Vol. 44, pp. 546-556 (2005).
23. K. S. Kang, C. H. Kim, K. K. Bae, W. C. Cho, S. H. Kim, C. S. Park, “Oxygen-Carrier Selection and Thermal Analysis of the Chemical-Looping Process for Hydrogen Production,” International journal of hydrogen energy, Vol. 35, pp. 12246-12254 (2010).
24. J. A. Peña, E. Lorente, E. Romero, J. Herguido, “Kinetic Study of the Redox Process for Storing Hydorgen Reduction Stage,” Catalysis Today, Vol. 116, pp. 439-444, (2006).
25. A. Pineau, N. Kanari, I. Gaballah, “Kinetics of Reduction of Iron Oxides by H2 Part I. Low Temperature Reduction of Hematite,” Thermochimica Acta, Vol. 447, pp. 89-100 (2006).
26. J. Bessieres, A. Bessieres, J. J. Heizmann, “Iron Oxide Reduction Kinetics by Hydrogen,” International Journal of Hydrogen Energy,” Vol. 5, pp. 585-595 (1980).
27. H. Y. Lin, Y. W. Chen, C. Li, “The Mechanism of Reduction of Iron Oxide by Hydrogen,” Thermochimica Acta, Vol. 400, pp. 61-67 (2003).
28. W. K. Jozwiak, E. Kaczmarek, T. P. Maniecki, W. Ignaczak, W. Maniukiewicz, “Reduction Behavior of Iron Oxides in Hydrogen and Carbon Monoxide Atmospheres,” Applied Catalysis A: General, Vol. 326, PP. 17-27 (2007).
29. A. Abad, J. Adánez, F. García-Labiano, L. F. de Diego, P. Gayán, J. Celaya, “Mapping of The Range of Operational Conditions for Cu-, Fe- and Ni-Based Oxygen Carriers in Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 533-549 (2007).
30. P. C. Chiu , Y. Ku, Y. L. Wu, H. C. Wu,Y.L. Kuo ,Y. H. Tseng, ”Characterization and Evaluation of Prepared Fe2O3/Al2O3 Oxygen Carriers for Chemical Looping Process,” Aerosol and Air Quality Research, Vol. 14, pp. 981–990 (2014).
31. A. Abad, F. García-Labiano, L. F. de Diego, P. Gayán, J. Adánez, “Reduction Kinetics of Cu-, Ni- and Fe-Based Oxygen Carriers Using Syngas (CO+H2) for Chemical Looping Combustion,” Energy & Fuels, Vol. 21, pp. 184-153 ( 2007).
32. H. Leion, T. Mattisson, A. Lyngfelt, “The Use of Petroleum Coke as Fuel in Chemical-Looping Combustion,” Fuel, Vol. 86, pp. 1947-1958 (2007).
33. T. Mattisson, M. Johansson, A. Lyngfelt, “Multicycle Reduction and Oxidation of Different Types of Iron Oxide Particles-Application to Chemical-Looping Combustion,” Energy & Fuels, Vol. 18, pp. 628-637 ( 2004).
34. Q. Zafar, T. Mattisson, B. Gevert, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy & Fuels, Vol. 20, pp. 34-44 (2006).
35. M. Rydèn, M. Arjmand, “Continuous Hydrogen Production Via the Steam-Iron Reaction by Chemical Looping in a Circulating Fluidized-Bed Reactor,” International Journal of Hydrogen Energy, Vol. 37, pp. 4843-4854 (2012).
36. Q. Zafar, T. Mattisson, B. Gevert, “Integrated Hydrogen and Power Production with CO2 Capture Using Chemical-Looping Reforming-Redox Reactivity of Particles of CuO, Mn2O3, NiO, and Fe2O3 Using SiO2 as Support,” Industrial & Engineering Chemistry Research, Vol. 44, pp. 3485-3496 (2005).
37. M. M. Azis, E. Jerndal, H. Leion, T. Mattisson, A. Lyngfelt, “On the Evaluation of Synthetic and Natural Ilmenite Using Syngas as Fuel in Chemical-Looping Combustion (CLC),” Chemical Engineering Research and Design, Vol. 88, pp. 1505-1514 (2010).
38. 劉祐誠,「以合成氣為燃料評估Fe2TiO5載氧體在化學迴圈程序的應用」,碩士論文,國立台灣科技大學(2011)。
39. F. Garćıa-Labiano, L.F. de Diego, J. Adánez, A. Abad, P. Gaýan, “Reduction and Oxidation Kinetics of a Copper-based Oxygen Carrier Prepared by Impregnation for Chemical-Looping Combustion,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 8168-8177 (2004).
40. L. F. de Diego, F. Garćıa-Labiano, P. Gaýan, J. Celaya, J. M. Palacios, J. Adánez, “Operation of a 10kWth Chemical-Looping Combustor during 200h with a CuO-Al2O3 Oxygen Carrier,” Fuel, Vol. 86, No. 7-8, pp. 1036-1045 (2007).
41. T. Mattisson, A. Järdnäs, A. Lyngfelt, “Reactivity of Some Metal Oxides Supported on Alumina with Alternating Methane and Oxygen-application for Chemical-Looping Combustion,” Energy & Fuels, Vol. 17, pp. 643-651 (2003).
42. L. F. de Diego, P. Gaýan, F. Garćıa-Labiano, J. Celaya, A. Abad, J. Adánez, “Impregnated CuO/Al2O3 Oxygen Carriers for Chemical-Looping Combustion: Avoiding Fluidized Bed Agglomeration,” Energy & Fuels, Vol. 19, pp. 1850-1856 (2005).
43. S. Y. Chuang, J. S. Dennis, A. N. Hayhurst, S. A. Scott,“Development and performance of Cu-based Oxygen Carriers for Chemical-Looping Combustion,” Combustion and Flame, Vol. 154, pp. 109-121 (2008).
44. B. Wang, H. Zhao, Y. Zheng, Z. Liu, R. Yan, C. Zheng, “Chemical Looping Combustion of a Chinese Anthracite with Fe2O3-Based and CuO-Based Oxygen Carriers,” Fuel Processing Technology, Vol. 96, pp. 104-115 (2012).
45. M. Arjmand, A-M. Azad, H. Leion, T. Mattisson, A. Lyngfelt, “Evaluation of CuAl2O4 as an Oxygen Carrier in Chemical-Looping Combustion (CLC),”, Industrial & Engineering Chemistry Research, Vol. 51, pp. 13924-13934 (2012).
46. B. M. Corbella, L.F. de Diego, F. Garćıa-Labiano, J. Adánez, J.M. Palacios, “Characterization and Performance in a Multicycle Test in a Fixed-bed Reactor of Silica-supported Copper Oxide as Oxygen Carrier for Chemical-Looping Combustion of Methane,” Energy & Fuels, Vol. 20, pp. 148-154 (2006).
47. T. Mattisson, H. Leion, A. Lyngfelt, “Chemical-Looping with Oxygen Uncoupling using CuO/ZrO2 with Petroleum Coke,” Fuel, Vol. 88, pp. 683-690 (2009).
48. B. M. Corbella, L.F. de Diego, F. Garćıa-Labiano, J. Adánez, J.M. Palacios, “The Performance in a Fixed Bed Reactor of Copper-based Oxides on Titania as Oxygen Carriers for Chemical Looping Combustion of Methane,” Energy & Fuels, Vol. 19, pp. 433-441 (2005).
49. H. Tian, K. Chaudhari, T. Simonyi, J. Poston, T. Liu, T. Sanders, G. Veser, R. Siriwardane, “Chemical-Looping Combustion of Coal-derived Synthesis Gas over Copper Oxide Oxygen Carriers,” Energy & Fuels, Vol. 22, pp. 3744-3755 (2008).
50. P. Gay´an, L. F. de Diego, F. Garc´ıa-Labiano, J. Ad´anez, A. Abad, C. Dueso, “Effect of Support on Reactivity and Selectivity of Ni-Based Oxygen Carriers for Chemical-Looping Combustion,” Fuel, Vol. 87, pp. 2641–2650 (2008)
51. D-Q. Chen, L-H. Shen, J. Xiao, T. Song, H-M. Gu, S-W. Zhang, “Experimental Investigation of Hematite Oxygen Carrier Decorated with NiO for Chemical-Looping Combustion of Coal,” Journal of Fuel Chemistry and Technology, Vol. 40, pp. 267-272 (2012).
52. M. Ryden, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, “Ilmenite with Addition of NiO as Oxygen Carrier for Chemical-Looping Combustion,” Fuel, Vol. 89, pp. 3523–3533 (2010).
53. Z. Gao, L. Shen, J. Xiao, C. Qing, Q. Song, “Use of Coal as Fuel for Chemical-Looping Combustion with Ni-Based Oxygen Carrier,” Industrial & Engineering Chemistry Research, Vol. 47, pp. 9279-9287 (2008).
54. Z. Qamar, M. Tobias, G. Borje, “Redox Investigation of Some Oxides of Transition-State Metals Ni, Cu, Fe, and Mn Supported on SiO2 and MgAl2O4,” Energy & Fuel, Vol. 20, pp. 34-44 (2006).
55. R. Villa, C. Cristiani, G. Groppi, L. Lietti, P. Forzatti, U. Cornaro, S. Rossini,.”Ni-Based Mixed Oxide Materials for CH4 Oxidation under Redox Cycle Conditions,” Journal of Molecular Catalysis A: Chemical, Vol. 204-205, pp. 637-646 (2003).
56. E. Jerndal, T. Mattisson, A. Lyngfelt, “Investigation of Different NiO/NiAl2O4 Particles as Oxygen Carriers for Chemical-Looping Combustion,” Energy & Fuels, Vol. 23, pp. 665-676 (2009).
57. L. Shen, J. Wu, Z. Gao, J. Xiao, “Characterization of Chemical Looping Combustion of Coal in a 1 kWth Reactor with a Nickel-Based Oxygen Carrier,” Combustion and Flame, Vol. 157, pp. 934-942 (2010).
58. L. Shen, J. Wu, Z. Gao, J. Xiao, “Reactivity Deterioration of NiO/Al2O3 Oxygen Carrier for Chemical Looping Combustion of Coal in a 10 kWth Reactor,” Combustion and Flame, Vol. 156, pp. 1377-1385 (2009).
59. M. Johansson, T. Mattisson, A. Lyngfelt, “Use of NiO/NiAl2O4 Particles in a 10 kW Chemical-Looping Combustor,” Industrial and Engineering Chemistry Research, Vol. 45, pp. 5911-5919 (2006).
60. L. F. de Diego, M. Ortiz, J. Adánez, F. García-Labiano, A. Abad, P. Gayán, “Synthesis Gas Generation by Chemical-Looping Reforming in a Batch Fluidized Bed Reactor Using Ni-Based Oxygen Carriers,” Chemical Engineering Journal, Vol. 144, pp. 289-298 (2008).
61. E. R. Stobbe, B. A. de Boer, J. W. Geus, “The Reduction and Oxidation Behaviour of Manganese Oxides,” Catalysis Today, Vol. 47, pp. 161-167 (1999).
62. Q. Zafar, A. Abad, T. Mattisson, B. Gevert, M. Strand, “Reduction and Oxidation Kinetics of Mn3O4/Mg-ZrO2 Oxygen Carrier Particles for Chemical-Looping Combustion,” Chemical Engineering Science, Vol. 62, pp. 655-666 (2007).
63. K. Otsuka, T. Kaburagi, C. Yamada, S. Takenaka, “Chemical Storage of Hydorgen by Modified Iron Oxides,” Journal of Power Sources, Vol. 122, pp. 111-121 (2003).
64. R. Magnus, E. Cleverstam, M. Johansson, A. Lyngfelt, T. Mattisson, “Fe2O3 on Ce-, Ca-, or Mg-Stabilized ZrO2 as Oxygen Carrier for Chemical-Looping Combustion Using NiO as Additive,” AIChE Journal, Vol. 56, No. 8 (2010).
65. R. Chaigneau, R. H. Heerema, “The Influence of Specific Impurities on the Nucleation and Growth of Magnetite during Reduction of Artificially Prepared Hematite,” Metallurgical Transactions B, Vol. 22B, pp.503-511, (1991).
66. A. A. El-Geassy, “Stepwise Reduction of CaO and/or to Magnetite Then Subsequently to MgO Doped-Fe2O3 Compacts Iron at 1173-1473K,” ISIJ International, Vol. 37, pp. 844-853, (1997).
67. U. F. Chinje, J. H. E. Jeffes, “Effects of Chemical Composition of Iron Oxides on Their Rates of Reduction: Part 1 Effect of Trivalent Metal Oxides on Reduction of Hematite to Lower Iron Oxides,” Ironmaking and Steelmaking, Vol. 16, pp. 90-98, (1989).
68. M. H. Khedr, “Isothermal Reduction Kinetics of Fe2O3 Mixed with 1–10% Cr2O3 at 1173-1473K,” ISIJ International, Vol. 40, pp. 309-314 (2000).
69. L. Liu, M. R. Zachariah, “Enhanced performance of alkali metal doped Fe2O3 and Fe2O3/Al2O3 composites as oxygen carrier material in chemical looping combustion,” Energy & Fuels, Vol. 27, pp. 4977-4983 (2013).
70. 朱敬平,「化學迴圈燃燒技術發展概況簡介」,中興工程季刊第110期,pp. 63-72 (2011)。
71. 顧洋,「化學迴路程序應用於減碳領域之發展趨勢」。
72. A. Lyngfelt, “Oxygen Carriers for Chemical Looping Combustion-4000h of Operational Experience,” Oil Gas Sci. Technol, Vol. 66, pp. 161–172 (2011).
73. L. Shen, J. Wu, J. Xiao, Q. Song, R. Xiao, “Chemical-Looping Combustion of Biomass in a 10 kW Reactor with Iron Oxide as an Oxygen Carrier,” Energy & Fuels, Vol. 23, pp. 2498-2505 (2009).
74. P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, “Comparison of Two Ni-Based Oxygen Carriers for Chemical Looping Combustion of Natural Gas in 140 kW Continuous Looping Operation,” Industrial & Engineering Chemistry Research, Vol. 48, pp. 5542-5547 (2009).
75. F. Li, L. Fan, “Clean Coal Conversion Processes-Progress and Challenges,” Energy & Environmental Science, Vol. 1, pp. 248-267 (2008).
76. 顧洋,邱炳嶔,「能源新技術–化學迴圈程序簡介」,化工技術第19卷第12期,pp. 132-145 (2011)。
77. 藍戈丰,「五分鐘了解美國頁岩油」,環境經濟 (2013)。
78. 林祖儀,「頁岩油真的可以拯救全世界?」,商業週刊,財經新聞儀點通 (2012)。
79. 趙衛武,「美國頁岩氣開發之過去、現在與未來展望」,駐美代表處 (2013)。
80. 張紂微,「全球頁岩氣發展現況與趨勢」,能源知識庫,油氣探勘開發及技術研發計畫管理辦公室 (2012)。
81. 趙文衡,「頁岩氣革命影響全球能源布局」,能源知識庫,台灣經濟研究院 (2012)。
82. A. Fossdal, E. Bakken, B.A. Oye, C. Schoning, I. Kaus, T. Mokkelbost, Y. Larring, “Study of inexpensive oxygen carriers for chemical looping combustion,” International Journal of Greenhouse Gas Control, Vol. 5, pp. 483-488 (2011).
83. J. Zhang, Q. Guo, Y. Liu, Y. Cheng, “Preparation and characterization of Fe2O3/Al2O3 using the solution combustion approach for chemical looping combustion,” Industrial & Engineering Chemistry, Vol. 51, pp. 12773-12781 (2012).
84. Y. Zhang, E. Doroodchi, B. Moghtaderi, “Chemical looping combustion of ultra low concentration of methane with Fe2O3/Al2O3 and CuO/SiO2,” Applied Energy, Vol. 113, pp. 1916–1923(2014).
85. H. Ge, L. Shen, H. Gu, S. Jiang, “Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal,” Chemical Engineering Journal, Vol. 262, pp. 1065-1076 (2015).
86. H. Gu, L. Shen, J. Xiao, S. Zhang, T. Song, “Chemical looping combustion of biomass/coal with natural iron ore as oxygen carrier in a continuous reactor,” Energy & Fuels, Vol. 25, pp. 446-455 (2011).
87. 呂維明、戴怡得,「粉粒體粒徑量測技術」,高立圖書有限公司 (2004)。
88. M. N. Rahaman, “Ceramic Processing and Sintering,” Taylor & Francis e-Library, ISBN 0-23-91226-8 (2005).
89. 黃坤祥,「粉末冶金學」,中華民國粉末冶金學會(2008)。
90. 王文魁、王繼揚、趙珊茸,「晶體形貌學」,中國地質大學出版社(2001)。
91. C. Y. Wen, Y. H. Yu, “A generalized method for predicting the minimum fluidization velocity,” A1ChE Journal, Vol. 12, pp. 610-612 (1996).
92. P. Gayán, A. Cabello, F. G. Labiano, A. Abad, L. F. de Diego, J. Adanez, “Performance of a low Ni content oxygen carrier for fuel gas combustion in a continuous CLC unit using a CaO/Al2O3 system as support,” International Journal of Greenhouse Gas Control, Vol. 14, pp. 209-219 (2013).
93. K. S. Go, S. R. Son, S. D. Kim, “Reaction Kinetics of Reduction and Oxidation of Metal Oxides for Hydorgen Production,” International Journal of Hydorgen Energy, Vol. 33, pp. 5986-5995 (2008).

無法下載圖示 全文公開日期 2020/07/08 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE