簡易檢索 / 詳目顯示

研究生: 林大程
Da-Cheng Lin
論文名稱: 應用人工蜂群演算法於主從控制微電網之儲能設備排程策略
Unit Commitment of Energy Storage Devices of Microgrid Based on Master Slave Control by Application of Artificial Bee Colony
指導教授: 郭明哲
Ming-Tse Kuo
口試委員: 吳進忠
Chin-Chung Wu
郭政謙
Cheng-Chien Kuo
楊明達
Ming-Ta Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 104
中文關鍵詞: 微電網分散式電源主從式控制儲能設備排程人工蜂群演算法
外文關鍵詞: distributed energy resource, master-slave control
相關次數: 點閱:338下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在探討微電網基於主從式控制下多種運轉情形和故障偵測後微電網的自癒以及透過人工蜂群演算法制定儲能設備的排程策略以符合當地電網的需求。本文微電網模型參照行政院原子能委員會核能研究所380V低壓微電網,微電網模型選擇使用Matlab/Simulink模擬軟體建立。模型包括以下功能:可模擬分散式能源輸出變動功率之特性,可模擬多種微電網運轉模式,包含併網運轉、孤島運轉及從併網轉換至孤島運轉,許多運轉模式將面臨多次併聯與解聯之操作,透過電壓、頻率、相位角調節將可有效降低分散式能源併網所產生的擾動。再者,當微電網與主電網進行解聯時,偵測公共連結點之功率,藉由微電網內部電源調節,使其功率流動歸零,將可降低解聯所造成的擾動。此外,故障時偵測故障點並自動進行復原和隔離動作,可縮小故障所影響區域,使非故障區域可快速恢復供電,進而達到電網自癒之功能。本文應用蜂群演算法於儲能設備運轉排程策略,為了使儲能設備滿足多項需求,故設立多項評估指標以作為演算法評估排程策略優劣之依據。最後實驗結果顯示,透過蜂群演算法控制儲能設備可滿足微電網的多種特性需求,並可降低關鍵時段尖峰負載並保有系統之可靠性。


    This thesis aims to explore various operating situations in the microgrid based on the master-slave control and self-healing of microgrid after fault detections. Using artificial bee colony algorithm developed scheduling strategies of the energy storage devices to meet the needs of the local power grid. The microgrid models in this thesis were referred to 380V low voltage microgrids in Institute of Nuclear Energy Research, AEC, EY. Matlab/Simulink simulation software was selected to establish the microgrid models which include the following features. It can simulate the characteristics of output variation power in the DER and a variety of operation modes in microgrids which include grid connected mode, islanding mode and switching from grid connected mode to islanding mode. A lot of operating mode will face many times of grid connected and disconnected operations. The disturbance generated by DER will effectively be reduced by using adjustments of voltage, frequency and phase angle. Furthermore, when the main grid disconnected with a microgrid, the point of common coupling will be detected by using adjusted internal power supply in microgrid to decrease power flow to zero. It will reduce the disturbance caused by disconnection. In addition, when a fault point was detected and automatic recovery and fault isolating was operated, the area affected by the fault can be reduced so non-fault regions can quickly be restored. Thus, self-healing functions can be achieved. The artificial bee colony algorithm was applied to operation scheduling strategies of the energy storage devices. In order to meet several needs of the energy storage devices, establishing many assessment indicators assessed the pros and cons of scheduled algorithms. Finally, experimental results show that storage equipment controlled by the artificial bee colony algorithm can satisfy needs of variety characteristics in microgrids. It can reduce peak loads in critical periods and keep the system reliability.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XI 1. 第一章 緒論 1 1.1 研究背景 1 1.2 文獻探討 1 1.2.1 研究目標與方法 2 1.3 論文架構 3 2. 第二章 微電網 4 2.1 微電網的背景及簡介 4 2.1.1 智慧電網(Smart Grid)的定義 4 2.1.2 微電網(Microgrid)的定義 5 2.1.3 分散式能源(Distributed Energy Resource, DER) 5 2.1.4 儲能設備(Energy Storage) 5 2.2 微電網在各國的發展狀況 6 2.2.1 美國微電網的發展概況及近期相關計畫 6 2.2.2 歐盟微電網的發展概況及近期相關計畫 10 2.2.3 日本微電網的發展概況及近期相關計畫 12 2.3 微電網的特性 15 2.4 微電網的好處 16 2.4.1 微電網帶給主電網的好處 16 2.4.2 微電網帶給用戶的好處 17 2.5 微電網的架構 17 3. 第三章 微電網的控制策略與模型建立 19 3.1 前言 19 3.2 主從控制法( Master-Slave Operation ) 20 3.3 多重主從控制法( Multi-Master-Slave Operation ) 21 3.4 微電網Matlab/Simulink模型建立 23 3.5 Inverter之設計 25 3.5.1 儲能設備參數 25 3.5.2 qd0 靜止座標軸轉換 26 3.5.3 角度估測 27 3.5.4 頻率估測 27 3.5.5 qd0 靜止座標軸與任意旋轉座標軸轉換 28 3.5.6 Inverter輸入參數 29 3.5.7 LC濾波電路 30 3.5.8 Inverter併網電壓、頻率、相位調節 31 3.5.9 微電網運轉模式 32 3.5.10 從屬電流源(Slave Current Source)之控制策略 33 3.5.11 主控電壓源(Master Voltage Source)之控制策略 35 3.5.12 Matlab / Simulink Inverter 控制方塊 35 4. 第四章 微電網運轉及故障復原 37 4.1 微電網於各種運轉模式模擬分析 37 4.2 微電網故障及自癒 46 4.3 微電網故障恢復模擬結果與分析 51 5. 第五章 應用蜂群演算法於儲能設備運轉排程策略 54 5.1 前言 54 5.2 運用面積方法 55 5.3 運用搬運方法 57 5.3.1 搬運流程 57 5.3.2 電量終值 58 5.3.3 除錯 59 5.3.4 實際需求 60 5.3.5 充電限制問題 61 5.4 評估指標 63 5.5 人工蜂群演算法(Artificial Bee Colony, ABC) 66 5.5.1 前言 66 5.5.2 搬運選擇 67 5.5.3 程式流程 67 5.6 實驗模擬結果 72 5.6.1 無功率限制條件下 72 5.6.2 於功率限制條件下 78 6. 第六章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 86 附錄A 89

    [1] http://www.smartgrids.eu/node/14 “More microgrids project,” 2016.07
    [2] Nikos Hatziargyriou, “Microgrids architectures and control,” Wiley IEEE Press 2013.
    [3] United States Department of Energy, Office of Electric Transmission and Distribution, “Grid 2030,” A national vision for electricity’s second 100 Years, July 2003.
    [4] Electric Power Research Institute Report to NIST on the Smart Grid Interoperability Standards Roadmap.2009.
    [5] Nikos Hatziargyriou et al. “Microgrids,” IEEE power and energy magazine, vol. 5, no. 5, pp.78-94, July-Aug. 2007.
    [6] Tao, L., and C. Schwaegerl, “Advanced architectures and control concepts for more microgrids,” EC Project, Tech. Rep. SES6-019864, 2009.
    [7] 徐青山,“分布式發電與微電網技術” 人民郵電出版社 2011。
    [8] https://building-microgrid.lbl.gov/about-microgrids“About microgrid on microgrid at Berkeley Lab,” 2016.07
    [9] Nikos Hatziargyriou, “Microgrids architectures and control,” Wiley IEEE Press 2013, pp. 231.
    [10] https://building-microgrid.lbl.gov/projects/der-cam “DER-CAM on microgrid at Berkeley Lab,” 2016.07
    [11] http://ec.europa.eu/programmes/horizon2020/ “HORIZON 2020,” 2016.07
    [12] http://www.tiloshorizon.eu/about-us/ “About TILOS,” 2016.07
    [13] http://www.tiloshorizon.eu/overview/ “The overview of TILOS,” 2016.07
    [14] Nikos Hatziargyriou, “Microgrids architectures and control,” Wiley IEEE Press 2013, pp. 249.
    [15] http://www.renewableenergyworld.com/articles/2015/05/born-from-disaster-japans-first-microgrid-community-represents-future-of-energy.html “Born from Disaster: Japan Establishes First Microgrid Community,” 2016.07
    [16] http://www.clarke-energy.com/chp-cogeneration/ “Cogeneration Combined heat and Power (CHP),” 2016.07
    [17] Chen, J.F. and Chu, C.-L, “Combination voltage-controlled and current-controlled PWM inverters for UPS parallel operation,” IEEE Transactions on Power Electronics, vol. 10, no. 5, Sep. 1995, pp. 547 – 558.
    [18] Lasseter, “Microgrids distributed power generation,” IEEE Power Engineering Society Winter Meeting Conference Proceedings, Columbus, Ohio, 2001 vol. 1, pp. 146–149.
    [19] Engler, Alfred. “Applicability of droops in low voltage grids,” International Journal of Distributed Energy Resources vol. 1, no.1, 2005, pp. 1-6.
    [20] Chee-Mun Ong. “Dynamic simulation of electric machinery : using matlab/simulink,” Prentice Hall PTR, 1998.
    [21] http://lmi.bwh.harvard.edu/papers/pdfs/2004/martin-fernandezCOURSE04b.pdf “Fundamentals on Estimation Theory,” 2016.07
    [22] http://abstractmath.org/MM/MMOtherSymbols.htm “Abstractmath.org 2.0,” 2016.07
    [23] Fang Lin Luo and Hong Ye, “Advance DC/AC inverters application in renewable energy,” CRC Press, 2012, p.24-p.27.
    [24] Hatua K, Jain A, Banerjee D and Ranganathan, “Active damping of output LC filter resonance for vectorcontrolled VSI-Fed AC motor drives,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, 2012 pp. 334–342.
    [25] Khederzadeh, Mojtaba, Hamed Maleki, and Vahid Asgharian. “Frequency control improvement of two adjacent microgrids in autonomous mode using back to back voltage-sourced converters,” International Journal of Electrical Power & Energy Systems 74 2016 pp. 126-133.
    [26] Stuart Borlase, “Smart grids: Infrastructure, technology and solutions,” CRC Press, 2013, p.71.
    [27] http://news.bbc.co.uk/2/hi/business/2263614.stm “Nectar figue,” 2016.07

    QR CODE