簡易檢索 / 詳目顯示

研究生: Daniel Laurent Hussein
Daniel Laurent Hussein
論文名稱: 運用與更新區域數據以評估印尼建築物之碳排量
Quantifying Life Cycle Carbon Emissions of Typical Residential Buildings in Indonesia with Regionalized Inventory Data
指導教授: 洪嫦闈
Cathy C.W. Hung
口試委員: 陳介豪
徐書謙
林彥宇
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 84
外文關鍵詞: Life-cycle Analysis, CO2 emission, Regionalized Inventory Data
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Buildings are known as a significant contributor to global CO2 emissions, emphasizing
    the need for effective mitigation measures in the building sector. Life cycle assessment
    (LCA) is a well-known tool for evaluating the environmental impacts of buildings
    throughout the product stage, construction stage, and use stage. Yet, the validity of LCA
    results is directly related to local inventory data reflecting regional characteristics,
    production processes, and emission factors. Primary data collection is resourceintensive and time-consuming, especially in most of Asian developing regions. Existing
    LCA studies on Indonesia buildings generally use accessible inventory data (such as
    emission factors) directly from data sources which may lead to underestimating the
    calculated impacts or emissions. This study aims to address the gap by conducting an
    LCA using regional inventory data in the cases of two residential buildings in Indonesia:
    single-family buildings (SFB) and multi-family buildings (MFB). Also, the estimated
    results are compared with previous LCA studies to understand the outcome difference.
    The outcome demonstrates that CO2 emissions emitted in use stage are the major
    contributor throughout the life cycle, accounting for 77-87% of total CO2 emissions. In
    the case of SFB, concrete presents the highest embodied CO2 contribution, while in the
    case of MFB, both steel and concrete are responsible for majority of the embodied CO2
    emissions. Overall, the estimated CO2 emissions with regionalized inventory data from
    Indonesia are higher than previous LCA studies using non-regionalized inventory data.
    This study serves to highlight the importance of using regionalized inventory data in
    assessing environmental impacts since the calculated results can vary significantly
    based on local factors.

    ABSTRACT.............................i ACKNOWLEDGEMENT......ii TABLE OF CONTENTS.......iii LIST OF FIGURES ................v LIST OF TABLES.................vi ABBREVIATIONS ..............vii CHAPTER 1: INTRODUCTION ......................................1 1.1 Research Background...........................................1 1.2 Research Gap and Objective ...................................3 1.3 Research Scope and Limitations.............................4 1.4 Research Outline ...................................................5 CHAPTER 2: LITERATURE REVIEW ................................6 2.1 Life Cycle Assessment (LCA) ..........................6 2.2 Life Cycle Assessment of Buildings.................8 2.3 Life Cycle Assessment in Indonesia .....................13 2.4 Life Cycle Assessment using Regionalization...................................18 2.5 Data Quality Assessment ...........................22 2.6 Summary .........................................23 CHAPTER 3: METHODOLOGY .............................24 3.1 Definition and Scope of the Case Study........................24 3.2 Regionalized Inventory Analysis..........................32 3.2.1 Product Stage..........................................32 3.2.2 Replacement ............................................48 3.2.3 Operational Use Stage .....................................49 3.3 Updating the Regionalized Inventory Data.........................50 3.4 Data Quality Assessment ...........................52 CHAPTER 4: RESULTS AND DISCUSSIONS..................................................55 4.1 Analysis of CO2 Emissions in the Life Cycle stages of SFB and MFB .......................55 4.2 Analysis of Embodied CO2 Emissions in Building Materials and Building Elements..........................57 4.3 Comparison with other studies........................60 4.4 Data Quality Assessment ...........................64 4.5 Policy Implementation and Contribution .......................65 CHAPTER 5: CONCLUSION......................................66 5.1 Conclusions...66 5.2 Future Research Works.............................................67 REFERENCES .....................68

    Abbe, O., & Hamilton, L. (2017). BRE Global Environmental Weighting for Construction
    Products using Selected Parameters from EN 15804. BRE Global Ltd.: Hertfordshire,
    UK.
    Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building
    industry. Renewable and sustainable energy reviews, 45, 244-248.
    Adi, A., Lasnawatin, F., Prananto, A., Suzanti, V., Anutomo, I., Anggreani, D., & Yuanningrat,
    H. (2022). Handbook of Energy and Economic Statistics of Indonesia 2022. Ministry of
    Energy and Mineral Resources Republic of Indonesia.
    Ashley Edelen, & Ingwersen, W. (2016). Guidance on Data Quality Assessment for Life Cycle
    Inventory Data. (EPA/600/R-16/096).
    Ayagapin, L., & Praene, J. P. (2020). Environmental Overcost of Single Family Houses in Insular
    Context: A Comparative LCA Study of Reunion Island and France. Sustainability,
    12(21), 8937.
    Bribián, I. Z., Usón, A. A., & Scarpellini, S. (2009). Life cycle assessment in buildings: Stateof-the-art and simplified LCA methodology as a complement for building certification.
    Building and Environment, 44(12), 2510-2520.
    Buildings, U., & Change, C. (2009). United Nations Environment Programme Sustainable
    Buildings & Climate Initiative: Paris. In: France.
    Cabeza, L. F., Rincón, L., Vilariño, V., Pérez, G., & Castell, A. (2014). Life cycle assessment
    (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A
    review. Renewable and sustainable energy reviews, 29, 394-416.
    https://doi.org/https://doi.org/10.1016/j.rser.2013.08.037
    CarbonChain. (2022). Understand Your Aluminum Emissions. Retrieved May 25 from
    https://www.carbonchain.com/blog/understand-your-aluminum-emissions
    Change, I. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Institute for
    Global Environmental Strategies, Hayama, Kanagawa, Japan.
    Change, I. P. o. C. (2018). Global warming of 1.5° C: An IPCC special report on the impacts of
    global warming of 1.5° C above pre-industrial levels and related global greenhouse gas
    emission pathways, in the context of strengthening the global response to the threat of
    climate change, sustainable development, and efforts to eradicate poverty.
    Intergovernmental Panel on Climate Change.
    Chau, C. K., Leung, T., & Ng, W. (2015). A review on life cycle assessment, life cycle energy
    assessment and life cycle carbon emissions assessment on buildings. Applied Energy,
    143, 395-413.
    Chungsangunsit, T., Gheewala, S. H., & Patumsawad, S. (2009). Emission assessment of rice
    husk combustion for power production. International Journal of Energy and
    Environmental Engineering, 3(5), 625-630.
    Crowther, P. (1999). Design for disassembly to recover embodied energy. Sustaining the future:
    Energy ecology architecture PLEA'99, 95-100.
    Cuéllar-Franca, R. M., & Azapagic, A. (2012). Environmental impacts of the UK residential
    sector: Life cycle assessment of houses. Building and Environment, 54, 86-99.
    Damayanti, R., & Khaerunissa, H. (2018). Carbon dioxide emission factor estimation from
    Indonesian coal. Indonesian Mining Journal, 21(1), 45-58.
    De Schepper, M., Van den Heede, P., Van Driessche, I., & De Belie, N. (2014). Life cycle
    assessment of completely recyclable concrete. Materials, 7(8), 6010-6027.
    Dong, Y. H., Ng, S. T., Kwan, A. H. K., & Wu, S. K. (2015). Substituting local data for overseas
    life cycle inventories – a case study of concrete products in Hong Kong. Journal of
    Cleaner Production, 87, 414-422.
    https://doi.org/https://doi.org/10.1016/j.jclepro.2014.10.005
    EN, B. (2011). 15978: 2011 Sustainability of construction works. Assessment of environmental
    performance of buildings. Calculation method, 30.
    Evangelista, P. P. A., Kiperstok, A., Torres, E. A., & Gonçalves, J. P. (2018). Environmental
    performance analysis of residential buildings in Brazil using life cycle assessment (LCA).
    Construction and Building Materials, 169, 748-761.
    https://doi.org/https://doi.org/10.1016/j.conbuildmat.2018.02.045
    Frick, H., & Suskiyatno, B. (2007). Dasar-dasar arsitektur ekologis. Yogyakarta: kanisius.
    GENDEK, A. (2009). Analysis of operational indices of the electric and internal combustion
    chain saws. WASZKIEWICZ C., KLONOWSKI J., GŁUCH J. Effect of plough body on
    the quali-ty of ploughing 5 BULIŃSKI J., MAJEWSKI Z. Effect of cereal cultivation
    technologies on soil compaction by, 35.
    Gustavsson, L., Joelsson, A., & Sathre, R. (2010). Life cycle primary energy use and carbon
    emission of an eight-storey wood-framed apartment building. Energy and Buildings,
    42(2), 230-242. https://doi.org/https://doi.org/10.1016/j.enbuild.2009.08.018
    Hasan, M., Muzammil, W., Mahlia, T., Jannifar, A., & Hasanuddin, I. (2012). A review on the
    pattern of electricity generation and emission in Indonesia from 1987 to 2009. Renewable
    and sustainable energy reviews, 16(5), 3206-3219.
    Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D.,
    Ramirez, A., Vega, M. I., & Shi, L. (2015). Integrated life-cycle assessment of
    electricity-supply scenarios confirms global environmental benefit of low-carbon
    technologies. Proceedings of the National Academy of Sciences, 112(20), 6277-6282.
    Huang, B., Chen, Y., McDowall, W., Türkeli, S., Bleischwitz, R., & Geng, Y. (2019). Embodied
    GHG emissions of building materials in Shanghai. Journal of Cleaner Production, 210,
    777-785. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.11.030
    Huberman, N., & Pearlmutter, D. (2008). A life-cycle energy analysis of building materials in
    the Negev desert. Energy and Buildings, 40(5), 837-848.
    Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., & Acquaye, A. (2013).
    Operational vs. embodied emissions in buildings—A review of current trends. Energy
    and Buildings, 66, 232-245.
    Ireland, K. U. a. (2021). Knauf UK & Ireland Sustainability Report 2021. Retrieved May 25 from
    https://issuu.com/knaufuk/docs/sustainability_report_2021_v1.1?e=908003670/939846
    88
    ISO. (2006). ISO 14044: 2006. Environmental management—Life cycle assessment—
    Requirements and guidelines. International Organization for Standardization.
    Jestin-Fleury, N. (1994). International energy agency. World energy outlook. Politique étrangère,
    59(2), 564-565.
    Ketenagalistrikan, B. S. (2020). Dirjen Ketenaga Listrikan. Kementrian ESDM, Jakarta.
    Kim, T., Tae, S., & Chae, C. U. (2016). Analysis of environmental impact for concrete using
    LCA by varying the recycling components, the compressive strength and the admixture
    material mixing. Sustainability, 8(4), 389.
    Koezjakov, A., Urge-Vorsatz, D., Crijns-Graus, W., & van den Broek, M. (2018). The
    relationship between operational energy demand and embodied energy in Dutch
    residential buildings. Energy and Buildings, 165, 233-245.
    https://doi.org/https://doi.org/10.1016/j.enbuild.2018.01.036
    KS, G., & Massijaya, M. (2014). Life cycle assessment for environmental product declaration of
    tropical plywood production in Malaysia and Indonesia.
    Lemigas, P. (2019). Surat Kepala Puslitbang Lemigas tentang Usulan Faktor Emisi Nasional
    Bahan Bakar Gas.
    Liang, Y., Cai, W., & Ma, M. (2019). Carbon dioxide intensity and income level in the Chinese
    megacities' residential building sector: decomposition and decoupling analyses. Science
    of the Total Environment, 677, 315-327.
    Martínez-Rocamora, A., Solís-Guzmán, J., & Marrero, M. (2016). LCA databases focused on
    construction materials: A review. Renewable and sustainable energy reviews, 58, 565-
    573.
    Mitigation, C. C. (2011). IPCC special report on renewable energy sources and climate change
    mitigation. Renewable Energy, 20(11).
    Moraga, G. L. (2017). Avaliação do Ciclo de Vida e simulação termoenergética em unidade
    habitacional unifamiliar do Programa Minha Casa Minha Vida.
    Morales, M., Moraga, G., Kirchheim, A. P., & Passuello, A. (2019). Regionalized inventory data
    in LCA of public housing: A comparison between two conventional typologies in
    southern Brazil. Journal of Cleaner Production, 238, 117869.
    Moreau, V., Bage, G., Marcotte, D., & Samson, R. (2012). Statistical estimation of missing data
    in life cycle inventory: an application to hydroelectric power plants. Journal of Cleaner
    Production, 37, 335-341. https://doi.org/https://doi.org/10.1016/j.jclepro.2012.07.036
    Nasional, B. S. (2002). Tata CaraCampuran Beton Ringan Dengan Agregat Ringan SNI 03-3449-
    2002. Badan Standar Nasional. Jakarta.
    Octova, A., & Indra, R. T. (2019). Analisis konsumsi bahan bakar dump truck Nissan UD CWM
    330 pada penambangan batubara di PT. Nan Riang. INVOTEK: Jurnal Inovasi
    Vokasional dan Teknologi, 19(2), 103-114.
    Ortiz-Rodríguez, O., Castells, F., & Sonnemann, G. (2010). Life cycle assessment of two
    dwellings: One in Spain, a developed country, and one in Colombia, a country under
    development. Science of the Total Environment, 408(12), 2435-2443.
    Ortiz, O., Castells, F., & Sonnemann, G. (2009). Sustainability in the construction industry: A
    review of recent developments based on LCA. Construction and Building Materials,
    23(1), 28-39.
    Ortiz Rodríguez, O. O. (2009). Sustainability assessment within the residential building sector:
    a practical life cycle method applied in a developed and a developing country.
    Universitat Rovira i Virgili.
    Oyarzo, J., & Peuportier, B. (2014). Life cycle assessment model applied to housing in Chile.
    Journal of Cleaner Production, 69, 109-116.
    Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A.,
    Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report.
    Contribution of Working Groups I, II and III to the fifth assessment report of the
    Intergovernmental Panel on Climate Change. Ipcc.
    Passer, A., Kreiner, H., & Maydl, P. (2012). Assessment of the environmental performance of
    buildings: A critical evaluation of the influence of technical building equipment on
    residential buildings. The International Journal of Life Cycle Assessment, 17, 1116-1130.
    Peng, J., Zhao, Y., Jiao, L., Zheng, W., & Zeng, L. (2012). CO2 emission calculation and
    reduction options in ceramic tile manufacture-the Foshan case. Energy Procedia, 16,
    467-476.
    Praseeda, K., Reddy, B. V., & Mani, M. (2015). Embodied energy assessment of building
    materials in India using process and input–output analysis. Energy and Buildings, 86,
    677-686.
    Pratiwi, S. N. (2020). Analisis Energi Pada Berbagai Material Dinding (Bata, Batako Dan Bata
    Ringan). Jurnal Arsitektur ARCADE, 4(3), 276-284.
    PROGRAMME, U. N. E. (2011). Global guidance principles for life cycle assessment databases:
    a basis for greener processes and products. In: UNEP-SETAC Life Cycle Initiative Paris.
    Quale, J., Eckelman, M. J., Williams, K. W., Sloditskie, G., & Zimmerman, J. B. (2012).
    Construction matters: Comparing environmental impacts of building modular and
    conventional homes in the United States. Journal of industrial ecology, 16(2), 243-253.
    Rakhmawati, A. N., Devia, Y. P., & Wijatmiko, I. (2020). Life Cycle Assessment (LCA)
    Analysis Of Concrete Slab Construction For Estimating The Environmental Impact.
    Rekayasa Sipil, 14(3), 232-237.
    Ramesh, T., Prakash, R., & Shukla, K. (2010). Life cycle energy analysis of buildings: An
    overview. Energy and Buildings, 42(10), 1592-1600.
    Ratnasingam, J., Ramasamy, G., Toong, W., Senin, A. L., Kusno, M. A., & Muttiah, N. (2015).
    An Assessment of the Carbon Footprint of Tropical Hardwood Sawn Timber Production.
    BioResources, 10(3).
    Ripa, M., Fiorentino, G., Vacca, V., & Ulgiati, S. (2017). The relevance of site-specific data in
    Life Cycle Assessment (LCA). The case of the municipal solid waste management in the
    metropolitan city of Naples (Italy). Journal of Cleaner Production, 142, 445-460.
    Rodrigues, C., & Freire, F. (2014). Integrated life-cycle assessment and thermal dynamic
    simulation of alternative scenarios for the roof retrofit of a house. Building and
    Environment, 81, 204-215.
    Ross, S., & Evans, D. (2002). Excluding site-specific data from the LCA inventory: how this
    affects life cycle impact assessment. The International Journal of Life Cycle Assessment,
    7, 141-150.
    Santoso, W. (2018). Emisi Gas Rumah Kaca di Industri Semen. Asosiasi Semen Indonesia (ASI),
    Jakarta, Indonesia, 1-26.
    SILVA, F. B., HORTA ARDUIN, R., DIESTELKAMP, E., TEIXEIRA, C. E., & OLIVEIRA,
    L. A. (2017). The importance of primary data for life cycle assessment of construction
    products in Brazil.
    Sinha, R., Lennartsson, M., & Frostell, B. (2016). Environmental footprint assessment of
    building structures: A comparative study. Building and Environment, 104, 162-171.
    Soust-Verdaguer, B., Llatas, C., & García-Martínez, A. (2016). Simplification in life cycle
    assessment of single-family houses: A review of recent developments. Building and
    Environment, 103, 215-227.
    Staff, I. E. A. (2012). CO2 emissions from fuel combustion. Organization for Economic.
    Standard, I. N. (2007). SNI-DT-91-0008-2007. Tata cara perhitungan harga satuan pekerjaan
    beton untuk konstruksi bangunan dan perumahan.
    Standardization, I. (2006). Environmental management: life cycle assessment: principles and
    framework. Vol. ISO, 14040.
    Statistik, B. P. (2017). Badan pusat statistik. Badan Pusat Statistik.
    Su, C., Madani, H., & Palm, B. (2018). Heating solutions for residential buildings in China:
    Current status and future outlook. Energy Conversion and Management, 177, 493-510.
    Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010). Want to be retweeted? large scale analytics
    on factors impacting retweet in twitter network. 2010 IEEE second international
    conference on social computing,
    Sukarno, I., Matsumoto, H., & Susanti, L. (2017). Household lifestyle effect on residential
    electrical energy consumption in Indonesia: On-site measurement methods. Urban
    Climate, 20, 20-32.
    Surabaya, B. (2021). Kota Surabaya Dalam Angka (Surabaya Municipality In Figures) 2021.
    BPS Kota Surabaya, 1-290.
    Surahman, U., Hartono, D., Setyowati, E., & Jurizat, A. (2022). Investigation on household
    energy consumption of urban residential buildings in major cities of Indonesia during
    COVID-19 pandemic. Energy and Buildings, 261, 111956.
    SURAHMAN, U., & KUBOTA, T. (2012). Development of A Simplified LCA Model For
    Residential Buildings in Indonesia. AIJ Journal of Technology and Design, 18(40), 1003-
    1008.
    Surahman, U., Kubota, T., & Higashi, O. (2015). Life cycle assessment of energy and CO2
    emissions for residential buildings in Jakarta and Bandung, Indonesia. Buildings, 5(4),
    1131-1155.
    Surahman, U., Kubota, T., & Wijaya, A. (2016). Life cycle assessment of energy and CO2
    emissions for residential buildings in Jakarta, Indonesia. IOP Conference Series:
    Materials Science and Engineering,
    Takano, A., Pal, S. K., Kuittinen, M., Alanne, K., Hughes, M., & Winter, S. (2015). The effect
    of material selection on life cycle energy balance: A case study on a hypothetical building
    model in Finland. Building and Environment, 89, 192-202.
    https://doi.org/https://doi.org/10.1016/j.buildenv.2015.03.001
    Tavares, V., Lacerda, N., & Freire, F. (2019). Embodied energy and greenhouse gas emissions
    analysis of a prefabricated modular house: The “Moby” case study. Journal of Cleaner
    Production, 212, 1044-1053.
    U, W. (2014). PCR 2014:02 Buildings (version 2.0).
    https://api.environdec.com/api/v1/EPDLibrary/Files/ce762c07-77ef-4b40-9c42-
    406ec5a02bab/Data
    Umum, K. (2013). Peraturan Menteri Pekerjaan Umum No. 11/PRT/M/2013 tentang Pedoman
    Analisis Harga Satuan (AHSP) Pekerjaan Bidang Umum. Kementerian Pekerjaan
    Umum, Jakarta.
    Utama, A., & Gheewala, S. H. (2008). Life cycle energy of single landed houses in Indonesia.
    Energy and Buildings, 40(10), 1911-1916.
    https://doi.org/https://doi.org/10.1016/j.enbuild.2008.04.017
    Utama, A., & Gheewala, S. H. (2009). Indonesian residential high rise buildings: A life cycle
    energy assessment. Energy and Buildings, 41(11), 1263-1268.
    Utama, N. A., Mclellan, B. C., Gheewala, S. H., & Ishihara, K. N. (2012). Embodied impacts of
    traditional clay versus modern concrete houses in a tropical regime. Building and
    Environment, 57, 362-369.
    Zuraida, S., Wahyuni, Y., & Larasati, D. (2019). Life cycle assessment of low costs housing in
    Indonesia. IOP Conference Series: Materials Science and Engineering

    無法下載圖示 全文公開日期 2024/08/07 (校內網路)
    全文公開日期 2024/08/07 (校外網路)
    全文公開日期 2024/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE