簡易檢索 / 詳目顯示

研究生: 蔡宗霖
Tsung-Lin Tsai
論文名稱: 具低雜訊及寬範圍輸出特性之直流-直流電能轉換器的實現與分析
Implementation and Analysis on a DC-DC Power Converter with Low-Switching-Noise and Wide-Output-Range
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
林景源
Jing-Yuan Lin
黃仁宏
Jen-Hung Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 零電壓切換雙邊零切開關切換雜訊
外文關鍵詞: ZVS, DS-ZVS, Switching noise
相關次數: 點閱:170下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然電源轉換器在零電壓切換條件之下,可以降低輸出的切換雜訊,然而在負載越重及頻率越高的情況下,開關上跨壓變化的斜率也隨之變大,使得輸出雜訊隨之增加。因此本論文主要研究目的為針對切換式直流電能轉換器,進行開關切換雜訊干擾之研究。藉由對電感上跨壓的波形分析,探討開關切換時跨壓的變化對輸出雜訊造成的影響。本文並以主動雙橋同步整流降壓式轉換器(Dual-Active-Bridge Synchronous Rectification Buck Converter, DAB SR Buck)電路進行研究與設計減少輸出雜訊的方法,最終成功實現雙邊零切技術(Double Sides Zero Voltage Switching, DS ZVS)。在模擬軟體SIMPLIS與實作結果上得到驗證,1 kW條件下的DAB SR Buck相較一般硬切降壓式轉換器可減少76.9%開關切換雜訊。


    Although power converters can reduce the output switching noise under zero-voltage switching conditions, the voltage change slope cross- the switch also becomes larger while the load is heavier and the switching frequency is higher. More importantly, the switching noise increases with it. The main research purpose of this thesis is to study the switching noise interference of DC switching power converters. By analyzing the waveform of the voltage across the inductor, the effect upon the variation the voltage across the switch on the output noise is discussed. In this thesis, a Dual-Active-Bridge Synchronous Rectification Buck (DAB SR Buck) Converter is studied and designed to reduce the output noise, and a Double-Sided Zero-Voltage-Switching (DS-ZVS) control scheme is implemented to further reduce the switching noise. Simulation software SIMPLIS and experiments are applied to verify the proposed converter operated at 1 kW. The experimental results show that over 76.9% switching noise is reduced by the DS-ZVS scheme.

    摘要 Abstract 誌 謝 目 錄 圖 目 錄 表 目 錄 第一章 緒論 1.1 研究動機與目的 1.2 論文大綱 第二章 切換式電源雜訊來源與抑制 2.1 切換式電源雜訊來源 2.1.1 切換雜訊原理分析 2.1.2 進入LC濾波器電壓波形之傅立葉分析 2.2 傳統降壓式轉換器零切拓樸優缺點 第三章 低雜訊主動雙橋同步整流降壓式轉換器 3.1 架構構想 3.2 電路動作原理設計 3.2.1 架構演化 3.2.1 輔助循環開關控制 3.3 電路動作分析 第四章 系統研製與參數設計 4.1 電路參數設計 4.1.1 電路規格 4.1.2 輸出電壓範圍設計 4.1.3 輸出電感設計 4.1.4 諧振電感設計 4.1.5 諧振電容設計 4.1.6 死區時間設計 4.1.7 輸出電容設計 4.1.8 續流二極體設計 4.1.9 功率開關設計 4.2隔離驅動電路設計 4.3線路佈局 4.3.1 系統方塊圖 4.3.2 系統架構圖 第五章 電路模擬與實驗波形 5.1 電路模擬結果 5.1.1 高壓輸出雙向潮流 5.1.2 低壓輸出雙向潮流 5.1.3 順向模式 5.1.4 逆向模式 5.2 電路實驗波形 5.2.1 順向硬切模式輸入330VDC,輸出250VDC,輸出4A 5.2.2 順向單邊零切模式輸入330VDC,輸出250VDC,輸出4A 5.2.3 順向雙邊零切模式輸入330VDC,輸出250VDC,輸出4A 5.2.4 順向硬切模式輸入330VDC,輸出50VDC,輸出20A 5.2.5 順向單邊零切模式輸入330VDC,輸出50VDC,輸出20A 5.2.6 順向雙邊零切模式輸入330VDC,輸出50VDC,輸出20A 5.2.5 實驗數據 第六章 結論與未來展望 6.1 結論 6.2 未來展望 參考文獻

    [1]J. A. FERREIRE, S. J. MARAIS, "A new approach to model component parasitics", IEEE - IAS'95, pp. 1031-1037, 1995-Oct.-8-12.
    [2]A. Massarini, and M. K. Kazimierczuk, “Self-capacitance of inductors,” IEEE Transactions on Power Electronics, vol. 12, no. 4, pp. 671-676, 1997.
    [3]Zhao, Lingyang,” Generalized Frequency Plane Model of Integrated Electromagnetic Power Passives”, Disseration, Virginia Polytechnic Institute and State University, May 2004.
    [4]Excelsys Technologies Ltd., ‘‘Ripple & Noise Measurements,’’ Application Note-AN1105, Nov. 2011.
    [5]S. Wang, F. C. Lee, and W. G. Odendaal, “Cancellation of capacitor parasitic parameters for noise reduction application,” IEEE Transactions on Power Electronics, vol. 21, no. 4, pp. 1125-1132, 2006.
    [6]M. A. Bueno, and A. K. T. Assis, “A new method for inductance calculations,” Journal of Physics D: Applied Physics, vol. 28, no. 9, pp. 1802, 1995.
    [7]S. Wang, F. C. Lee, D. Y. Chen, and W. G. Odendaal, “Effects of parasitic parameters on EMI filter performance,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 869-877, 2004.
    [8]S. Wang, F. C. Lee, and W. G. Odendaal, “Controlling the parasitic parameters to improve EMI filter performance,” in Proc. IEEE APEC, 2004, pp. 503-509.

    [9] S. Wang, F. C. Lee, and W. G. Odendaal, “Characterization, evaluation, and design of noise separator for conducted EMI noise diagnosis,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 974-982, 2005.
    [10]T. C. Neugebauer, and D. J. Perreault, “Parasitic capacitance cancellation in filter inductors,” IEEE Transactions on Power Electronics, vol. 21, no. 1, pp. 282-288, 2006.
    [11]M. Rajabzadeh, “New design and implementation of an external passive circuit for cancelling the parasitic capacitance in filter inductors,” in Proc. IEEE PEDES, 2010, pp. 1-4.
    [12]K. Piboonwattanakit, and W. Khan-ngern, “Parasitic capacitance cancellation of filter in power supply using mutual capacitance technique,” in Proc. IEEE ECTI-CON, 2008, pp. 1025-1028.
    [13]S. Wang, F. C. Lee, and J. D. Van Wyk, “Inductor winding capacitance cancellation using mutual capacitance concept for noise reduction application,” IEEE Transactions on Power Electronics, vol. 48, no. 2, pp. 311-318, 2006.
    [14]M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters. New York: Wiley-Interscience, 1995, pp.492-501.
    [15]楊衛國、肖冬,電力電子技術,北京: 冶金工业出版社,2011年,第233-235頁。
    [16]O. Abdel-Rahman, J. Liu, L. Yao, I. Batarseh, and H. Mao, “LCC zero voltage-switching buck converter with synchronous rectifier,” in Proc. IEEE IAS 2006, pp. 2150–2156.
    [17]Infineon Technologies AG, “1EDI20N12AF Single Channel MOSFET and GaN HEMT Gate Driver IC,” DataSheet, Jun. 2015.
    [18] Broadcom Inc., “AFBR-1624Z/1629Z and AFBR-2624Z/2529Z Fiber Optic Transmitter and Receiver,” DataSheet, Mar. 2013.

    QR CODE