簡易檢索 / 詳目顯示

研究生: 林宗慶
Zong-qing Lin
論文名稱: 局部區域仿生特徵之年齡估測
Component-based Bio-inspired Features for Age Estimation via Faces
指導教授: 徐繼聖
Gee-Sern Hsu
口試委員: 李明穗
MS Lee
鍾國亮
Kuo-Liang Chung
周凱支
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 年齡估測局部區域仿生特徵分層式年齡估測偏最小二乘回歸
外文關鍵詞: age estimation, component, BIF, hierarchical age estimation, PLSR
相關次數: 點閱:400下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文從全臉與臉部區塊提取仿生特徵來進行年齡估測的比較。本研究發現
    全臉特徵在年齡估測中是占有最多影響力的部分,但如果一些局部區塊與全臉的
    特徵結合可以有效提高整體的效能。將本方法測試在三個不同種族的年齡資料庫
    後發現,那些有影響力的臉部區塊會依據種族的不同而產生差異。本論文也包含
    了對分層式年齡分類(Hierarchical Age Estimation)的研究,此分類方法主要分為兩
    層,在第一層是分類年齡群組是屬於年輕族群或成人族群,並在第二層使用偏最
    小二乘回歸(PLSR)來進行細部的年齡估測。研究的重點式探討要如何對第一
    層兩個年齡群組的分割邊界做定義才可以提高年齡估測的精度。將本方法在公開
    年齡資料庫,如FG-NET 與MORPH 上作測試,以證實其有效性。


    The Bio-Inspired Features (BIFs), extracted from holistic and facial components, are compared for the performance of age estimation. Although it is discovered from this study that the holistic accounts for the most influential part, a few components are found to be able to improve the overall performance when combining with the holistic features. It is also revealed that the influential facial components vary with ethnicity, based on the experiments on three databases with different ethnic backgrounds. The approach nourished from this study consists of a hierarchical structure with two processing layers. The first layer segments a face into young and adult groups, and the second layer estimate the age using Partial Least Square Regression (PLSR). How to determine the segmentation boundary in the first layer is also studied for the improvement of the estimation accuracy. The performance of this approach is validated on publicly available databases to reveal its effectiveness.

    目錄 摘要 Abstract 誌謝 目錄 圖目錄 表目錄 演算法目錄 第一章 介紹 1.1 研究背景和動機 1.2 方法概述 1.3 論文貢獻 1.4 論文架構 第二章 相關文獻探討 2.1 年齡特徵擷取法 2.1.1 主動外觀模型(Active Appearance Models) 2.1.2 仿生特徵(Biologically Inspired Features) 2.2 年齡分類的方法 2.2.1 偏最小二乘法回歸(PLS Regression) 2.3 局部與混合特徵的相關年齡估測文獻 2.3.1 混合特徵相關文獻 2.4 分層式年齡分類的相關年齡估測文獻 2.4.1 分層式年齡分類相關文獻 第三章 主要方法流程 3.1 特徵擷取 3.1.1 主動外觀模型(Active Appearance Models) 3.1.2 遮罩式仿生特徵(Masked-BIF) 3.1.2 仿生主動外觀模型(Biologically Inspired AAM) 3.1.3 Local features of BIAAM 3.2 局部區塊權重計算 3.3 年齡分類 3.3.1 混合特徵 3.3.2 分層式年齡分類 第四章 實驗設置與結果 4.1 年齡資料庫 4.1.1 FG-NET database 介紹 4.1.2 MORPH database 介紹 4.1.3 台灣年齡資料庫 4.2 實驗樣本設置與前處理 4.2.1 人臉形狀正規化 4.3 特徵降維之相關實驗 4.4 臉部區塊權重實驗 4.5 實驗結果呈現 4.5.1 FG-NET database 效能 4.5.2 MORPH database 效能 4.5.3 台灣資料庫效能 4.6 跨資料庫效能呈現 4.7 各類文獻效能比較 第五章 實際系統應用 5.1 實際系統架構 5.2 實際系統展示 第六章 結論與未來研究方向 參考文獻

    參考文獻
    [1] Lanitis, A., Draganova, C., & Christodoulou, C. (2004). Comparing different
    classifiers for automatic age estimation. Systems, Man, and Cybernetics, Part B:
    Cybernetics, IEEE Transactions on, 34(1), 621-628.
    [2] Guo, G., Mu, G., Fu, Y., Dyer, C., & Huang, T. (2009, September). A study on
    automatic age estimation using a large database. In Computer Vision, 2009 IEEE
    12th International Conference on (pp. 1986-1991). IEEE.
    [3] Luu, K., Ricanek, K., Bui, T. D., & Suen, C. Y. (2009, September). Age estimation
    using active appearance models and support vector machine regression. In
    Biometrics: Theory, Applications, and Systems, 2009. BTAS'09. IEEE 3rd
    International Conference on (pp. 1-5). IEEE.
    [4] Kohli, S., Prakash, S., & Gupta, P. (2013). Hierarchical age estimation with
    dissimilarity-based classification. Neurocomputing, 120, 164-176.
    [5] Choi, S. E., Lee, Y. J., Lee, S. J., Park, K. R., & Kim, J. (2011). Age estimation
    using a hierarchical classifier based on global and local facial features. Pattern
    Recognition, 44(6), 1262-1281.
    [6] Suo, J., Wu, T., Zhu, S., Shan, S., Chen, X., & Gao, W. (2008, September). Design
    sparse features for age estimation using hierarchical face model. In Automatic
    Face & Gesture Recognition, 2008. FG'08. 8th IEEE International Conference on
    (pp. 1-6). IEEE.
    [7] Hong, L., Wen, D., Fang, C., & Ding, X. (2013, August). A new biologically
    inspired active appearance model for face age estimation by using local ordinal
    ranking. In Proceedings of the Fifth International Conference on Internet
    Multimedia Computing and Service (pp. 327-330). ACM.
    [8] Cootes, T. F., Edwards, G. J., & Taylor, C. J. (1998). Active appearance models.
    In Computer Vision—ECCV’98 (pp. 484-498). Springer Berlin Heidelberg.
    [9] Mu, G., Guo, G., Fu, Y., & Huang, T. S. (2009, June). Human age estimation using
    bio-inspired features. In Computer Vision and Pattern Recognition, 2009. CVPR
    2009. IEEE Conference on (pp. 112-119). IEEE.
    [10] Guo, G., & Mu, G. (2011, June). Simultaneous dimensionality reduction and
    58
    human age estimation via kernel partial least squares regression. In Computer
    Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on (pp. 657-664).
    IEEE.
    [11] Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models.
    International journal of computer vision, 1(4), 321-331.
    [12] Yuille, A.L., Cohen, D.S., and Hallinan, P.W., 1989. Feature extraction from faces
    using deformable templates, Proc. Comput. Vis. Patt. Recog., pp. 104–109.
    [13] Cootes, T. F., Taylor, C. J., Cooper, D. H., & Graham, J. (1995). Active shape
    models-their training and application. Computer vision and image understanding,
    61(1), 38-59.
    [14] Pearson, K.. On Lines and Planes of Closest Fit to Systems of Points in Space
    (PDF). Philosophical Magazine. 1901, 2 (6): 559–572.
    [15] M. Riesenhuber and T. Poggio, “Hierarchical Models of Object Recognition in
    Cortex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019-1025, 1999.
    [16] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio, “Robust Object
    Recognition with Cortex-Like Mechanisms,” IEEE Trans. Pattern Analysis and
    Machine Intelligence, vol. 29, no. 3, pp. 411-426, Mar. 2007.
    [17] Ian T. Jolliffe (1982). "A note on the Use of Principal Components in Regression".
    Journal of the Royal Statistical Society, Series C 31 (3): 300–303.
    [18] Shuicheng Yan, Huan Wang, Xiaoou Tang, T.S. Huang, Learning autostructured
    regressor from uncertain nonnegative labels, in: IEEE 11th
    International Conference on Computer Vision, ICCV (2007) 1–8.
    [19] Shuicheng Yan, Huan Wang, Xiaoou Tang, T.S. Huang, Learning autostructured
    regressor from uncertain nonnegative labels, in: IEEE 11th
    International Conference on Computer Vision, ICCV (2007) 1–8.
    [20] Guodong Guo, Yun Fu, C.R. Dyer, T.S. Huang, A probabilistic fusion approach
    to human age prediction, in: IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition Workshops (2008) 1–6
    [21] Guodong Guo, Yun Fu, C.R. Dyer, T.S. Huang, A probabilistic fusion approach
    to human age prediction, in: IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition Workshops (2008) 1–6
    59
    [22] Guodong Guo, Yun Fu, C.R. Dyer, T.S. Huang, A probabilistic fusion approach
    to human age prediction, in: IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition Workshops (2008) 1–6
    [23] Guodong Guo, Yun Fu, C.R. Dyer, T.S. Huang, A probabilistic fusion approach
    to human age prediction, in: IEEE Computer Society Conference on Computer
    Vision and Pattern Recognition Workshops (2008) 1–6
    [24] A. Gunay, V.V. Nabiyev, Automatic age classification with LBP, in: 23rd
    International Symposium on Computer and Information Sciences, ISCIS ′08
    (2008) 1–4.
    [25] A. Gunay, V.V. Nabiyev, Automatic age classification with LBP, in: 23rd
    International Symposium on Computer and Information Sciences, ISCIS ′08
    (2008) 1–4.
    [26] A. Gunay, V.V. Nabiyev, Automatic age classification with LBP, in: 23rd
    International Symposium on Computer and Information Sciences, ISCIS ′08
    (2008) 1–4.
    [27] A. Gunay, V.V. Nabiyev, Automatic age classification with LBP, in: 23rd
    International Symposium on Computer and Information Sciences, ISCIS ′08
    (2008) 1–4.
    [28] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph Embedding
    and Extension: A General Framework for Dimensionality Reduction,” IEEE
    Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 1, pp. 40-51, Jan.
    2007.
    [29] D. Cai, X. He, K. Zhou, J. Han, and H. Bao, “Locality Sensitive Discriminant
    Analysis,” Proc. 20th Int’l Joint Conf. Artificial Intelligence, pp. 708–713, Jan.
    2007.
    [30] D. Cai, X. He, J. Han, and H.-J. Zhang, “Orthogonal Laplacianfaces for Face
    Recognition,” IEEE Trans. Image Processing, vol. 15, no. 11, pp. 3608-3614,
    Nov. 2006.
    [31] A. R. Webb. Statistical Pattern Recognition, 2nd Edition. John Wiley, 2002.
    [32] Y. Fu, Y. Xu, and T.S. Huang, “Estimating Human Age by Manifold Analysis of
    Face Pictures and Regression on Aging Features,” Proc. IEEE Conf. Multimedia
    and Expo, pp. 1383-1386, 2007.
    [33] Y. Fu and T.S. Huang, “Human Age Estimation with Regression on
    60
    Discriminative Aging Manifold,” IEEE Trans. Multimedia, vol. 10, no. 4, pp. 578-
    584, June 2008.
    [34] A.J. Smola, B. Scholkopf A tutorial on support vector regression Stat. Comput.,
    14 (3) (2004), pp. 199–222
    [35] S. Wold, L. Eriksson, N. Kettaneh, PLS in Data Mining and Data Integratio,
    Handbook of Partial Least Squares, 2010, pp. 327–357.
    [36] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, Weka 3:
    Data Mining Software in Java, software available at
    http://www.cs.waikato.ac.nz/ml/weka/〉, 2009.
    [37] J. Zhu, S. Rosset, H. Zou, and T. Hastie. Multi-class AdaBoost. Statistics & its
    interface, vol. 2, pp.349-360, 2009.
    [38] The FG-NET Aging Database, http://www.fgnet.rsunit.com/, http://wwwprima.
    inrialpes.fr/FGnet/, 2010.
    [39] K. Ricanek and T. Tesafaye, “MORPH: A Longitudinal Image Database of
    Normal Adult Age-Progression,” Proc. IEEE Int’l Conf. Automatic Face and
    Gesture Recognition, pp. 341-345, 2-6 April 2006.
    [40] MORPH Face Database, http://faceaginggroup.com/, 2010.
    [41] X. Geng, Z.-H. Zhou, and K. Smith-Miles. “Automatic age estimation based on
    facial aging patterns.” TPAMI, 2007.
    [42] S. Yan, H. Wang, T. S. Huang, Q. Yang, and X. Tang. “Ranking with uncertain
    labels.” In ICME, 2007.
    [43] G. Guo, Y. Fu, T. S. Huang, and C. R. Dyer. “Image-based human age
    estimation by manifold learning and locally adjusted robust regression.” TIP,
    2008.
    [44] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. “Ordinal hyperplanes ranker with cost
    sensitivities for age estimation.” In CVPR, 2011.
    [45] Chen, K., Gong, S., Xiang, T., & Loy, C. C. (2013, June). “Cumulative attribute
    space for age and crowd density estimation. In Computer Vision and Pattern
    Recognition “(CVPR), 2013 IEEE Conference on (pp. 2467-2474). IEEE.
    [46] M. Riesenhuber and T. Poggio, “Hierarchical Models of Object Recognition in
    Cortex,” Nature Neuroscience, vol. 2, no. 11, pp. 1019-1025, 1999.
    61
    [47] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung. “A ranking approach for human ages
    estimation based on face images.” In ICPR, 2010.
    [48] Y. Zhang and D. Yeung. “Multi-tasks warped gaussian process for personalized
    age estimation.” In CVPR, 2010.
    [49] A. Asthana, S. Zafeiriou, S. Cheng and M. Pantic. Robust Discriminative
    Response Map Fitting with Constrained Local Models. CVPR 2013.
    [50] E. Pekalska, P. Paclik, R.P.W. Duin A generalized kernel approach to
    dissimilarity-based classification J. Mach. Learn. Res., 2 (2001), pp. 175–211
    [51] http://ibug.doc.ic.ac.uk/resources/drmf-matlab-code-cvpr-2013/

    QR CODE