簡易檢索 / 詳目顯示

研究生: 陳玠宏
Chieh-Hung Chen
論文名稱: 柱-基礎接合部往復載重行為研究
Cyclic Behavior of Column-Foundation Connection
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
陳正誠
Cheng-Cheng Chen
邱建國
Chien-Kuo Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 247
中文關鍵詞: 往復載重柱-基礎接合部強度彎鉤錨定擴頭鋼筋錨定
外文關鍵詞: cyclic load, the strength of column-foundation connection, hook anchor, headed anchor
相關次數: 點閱:179下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今淺基礎之設計,通常僅檢核穿孔剪力強度,若剪力強度不足通常會選擇增加基礎版厚度來滿足,而近期文獻(Laboratory Tests of Column-Foundation Moment Transfer Connections with Headed Anchors by Worsfold and Moehle, 2019)顯示柱-基礎接合部強度似乎還有很多研究空間,據此,本研究團隊與上述文獻作者合作,共同探討淺基礎柱與基礎版接合部強度在往復載重下之影響。

本研究共測試六組接近實際尺寸之試體,主要測試變數包含:(1)柱主筋錨定型式,分為彎鉤與擴頭錨定兩種;(2)柱箍筋是否連續提供於基礎版深度內;以及(3)柱主筋標準彎鉤延伸方向,分為往外延伸與往接頭區延伸兩種。實驗結果顯示,所有試體強度受到柱底發展撓曲強度所主控,另外由試體剖面裂縫觀察中可發現破壞面呈錐形,應為穿孔剪力破壞、錨栓拉破破壞與剪力撬破破壞之其中一種破壞機制控制,但分析結果顯示使用頂部T型梁-柱接頭模型與剪破強度模型其預測強度較為接近測試結果,與破壞模式不相符,且錨栓拉破強度模型所得結果普遍過於保守,最後撓曲剛度分析結果顯示,縱向主筋彎鉤方向朝接頭內延伸且於基礎版內有箍筋之試體,其撓曲剛度最大。


In the current, the design of shallow foundation only checked punching shear strength. If the shear strength is insufficient, usually increased the thickness to meet the requirements. The recent literature (Laboratory Tests of Column-Foundation Moment Transfer Connections with Headed Anchors by Worsfold and Moehle, 2019) showed that there seems to be a lot of research on the strength of the column-foundation connection. Based on this, our research team cooperated with Worsfold and Moehle to discuss the strength of column-foundation connection with cyclic load test.

This paper tested six specimens close to full-scale. The design parameters include: (1) the anchor type of the column longitudinal reinforcement, which is divided into two types: hook and Headed anchor; (2) whether the column stirrups are continuous into foundation; (3) The standard hook of the column longitudinal reinforcement is divided into two types: outward and interior. The experimental results show that the strength of all specimens is dominated by the nominal flexural strength that developed at the bottom of the column. In addition, it can see that the section cracks of the specimen failure surface is taper, which should be punching shear failure、tensile breakout failure or pryout failure. But the analysis results show that top T-beam-column joint model and shear breakout model close to the test results, which does not match the failure mode. And tensile breakout model is generally too conservative. The final, from flexural rigidity analysis results show that the specimens with the interior standard hook of the column longitudinal reinforcement and with stirrups into the foundation have the largest flexural rigidity.

摘要 I Abstract II 目錄 III 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究方法 3 1.4 研究內容架構 4 第二章 文獻回顧 5 2.1 ACI 318穿孔剪力強度發展回顧 5 2.2 ACI 318梁柱接頭強度發展回顧 14 2.3 ACI 318錨栓強度發展回顧 19 2.4 T型接頭之彎矩強度(Nilsson 與 Losberg, 1976) 25 2.5 柱-基礎接合部使用擴頭鋼筋錨定(Worsfold 與 Moehle, 2019) 28 第三章 試體規劃 31 3.1 試體設計 31 3.2 試體製作 46 3.2.1 基礎版施作 46 3.2.2 柱主體與頂部混凝土塊施作 49 3.3 試體配置與測試程序 50 3.3.1 支承元件 50 3.3.2 反力牆試驗配置 51 3.3.3 測試程序 55 3.4 量測系統配置 57 3.4.1 試體內部鋼筋應變量測配置 57 3.4.2 試體外部位移量測配置 60 3.4.3 基礎版外部變形 62 3.5 混凝土圓柱試體抗壓測試配置 64 第四章 試體結果分析 65 4.1 材料試驗結果 65 4.1.1 混凝土圓柱試體抗壓試驗 65 4.1.2 混凝土彈性模數 69 4.1.3 鋼筋拉伸試驗 70 4.2 反力牆試驗結果 73 4.2.1 試體測試過程 73 4.2.2 基礎版剖面裂縫 92 4.2.3 力量位移曲線 95 4.2.4 試體強度分析 97 4.2.5 試體變形分析 103 4.2.6 撓曲剛度 111 4.2.7 應變計量測 115 第五章 結論與建議 129 5.1 結論 129 5.2 建議 130 附錄A 試體設計詳細計算結果 131 A.1 Specimen Design 131 A.1.1 Overview 131 A.1.2 Column Design 131 A.1.3 Foundation Design 132 A.2 Punching Shear Evaluation 137 A.3 Joint Shear Evaluation 138 A.4 Anchor Strength Evaluation 139 A.4.1 Geometry Requirements 139 A.4.2 Steel Strength(Tensile Strength) 140 A.4.3 Breakout Strength(Tensile Strength) 140 A.4.4 Pullout Strength(Tensile Strength) 142 A.4.2 Steel Strength(Shear Strength) 142 A.4.3 Breakout Strength(Shear Strength) 142 A.4.4 Pryout Strength(Shear Strength) 144 A.5 Strut-And-Tie Evaluation 145 A.5.1 Anchorage 145 附錄B 基礎版變形曲線 147 B.1 試體HI_C 147 B.2 試體HO_C 149 B.3 試體T_C 151 B.4 試體HI 153 B.5 試體HO 155 B.6 試體T 157 附錄C 基礎版受力方向之應變 159 C.1 試體HI_C 159 C.2 試體HO_C 162 C.3 試體T_C 165 C.4 試體HI 168 C.6 試體T 174 附錄D 基礎版轉角 177 D.1 試體HI_C 177 D.2 試體HO_C 179 D.3 試體T_C 181 D.4 試體HI 183 D.5 試體HO 185 D.6 試體T 187 附錄E 基礎版中心向上位移 189 E.1 試體HI_C 189 E.2 試體HO_C 190 E.3 試體T_C 191 E.4 試體HI 192 E.5 試體HO 193 E.6 試體T 194 附錄F 柱箍筋應變計量測結果 195 F.1 試體HI_C 195 F.2 試體HO_C 197 F.3 試體T_C 199 附錄G 基礎版應變計量測結果 201 G.1 試體HI_C 201 G.2 試體HO_C 208 G.3 試體T_C 215 G.4 試體HI 222 G.5 試體HO 229 G.6 試體T 236 參考文獻 243

ACI Committee E-1, 1927, “Reinforced Concrete Building design and Specifications,” Proceedings, Journal of American Institute, V.23, No.2, February, pp. 643-677.

ACI Committee 318, 1941, “Building Regulations for Reinforced Concrete (ACI 318-41),” American Concrete Institute, Detroit, MI, 63 pp.

ACI Committee 318, 1947, “Building Code Requirements for Reinforced Concrete (ACI 318-47),” American Concrete Institute, Detroit, MI, 64 pp.

ACI Committee 318, 1951, “Building Code Requirements for Reinforced Concrete (ACI 318-51),” Proceedings, Journal of American Concrete Institute, V. 47, No. 4, April, pp 589-652.

ACI Committee 318, 1956, “Building Code Requirements for Reinforced Concrete (ACI 318-56),” Proceedings, Journal of American Concrete Institute, V. 52, No. 5, May, pp 913-986.

ACI Committee 318, 1963a, “Building Code Requirements for Reinforced Concrete (ACI 318-63),” American Concrete Institute, Detroit, MI, 144 pp.

ACI Committee 318, 1963b, “Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-63),” Publication SP-10 Special Publications, Detroit, MI, 91 pp.

ACI Committee 318, 1971a, “Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Detroit, MI, 78 pp.

ACI Committee 318, 1971b, “Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-71),” American Concrete Institute, Detroit, MI, 96 pp.

ACI Committee 318, 1974, “1974 Supplement to: Building Code Requirements for Reinforced Concrete (ACI 318-71) and Commentary on Building Code Requirements for Reinforced Concrete (ACI 318-71)” American Concrete Institute, Detroit, MI, 103 pp.

ACI Committee 318, 1977, “Building Code Requirements for Reinforced Concrete (ACI 318-77),” American Concrete Institute, Detroit, MI, 103 pp.

ACI Committee 318, 1983, “Building Code Requirements for Reinforced Concrete (ACI 318-83),” American Concrete Institute, Detroit, MI, 111 pp.

ACI Committee 318, 1989, “Building Code Requirements for Reinforced Concrete (ACI 318-89) and Commentary (ACI 318R-89)” American Concrete Institute, Detroit, MI, 353 pp.

ACI Committee 318, 1995, “Building Code Requirements for Structural Concrete (ACI 318-95) and Commentary (ACI 318R-95)” American Concrete Institute, Detroit, MI, 369 pp.

ACI Committee 318, 1999, “Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99)” American Concrete Institute, Farmington Hills, MI, 391 pp.

ACI Committee 318, 2002, “Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02)” American Concrete Institute, Farmington Hills, MI, 443 pp.

ACI Committee 318, 2005, “Building Code Requirements for Structural Concrete (ACI 318-05) and Commentary (ACI 318R-05)” American Concrete Institute, Farmington Hills, MI, 430 pp.

ACI Committee 318, 2008, “Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08)” American Concrete Institute, Farmington Hills, MI, 473 pp.

ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)” American Concrete Institute, Farmington Hills, MI, 519 pp.

ACI Committee 318, 2019, “Building Code Requirements for Structural Concrete and Commentary (ACI318-19),” American Concrete Institute, Farmington Hills Michigan, 623pp.

ACI Committee 355, 2019, “Qualification of Post-Installed Mechanical Anchors in Concrete(ACI 355.2-19) and Commentary,” American Concrete Institute, 91pp.

ACI Committee 355, 2020, “ACI 355.4-19 Qualification of Post-Installed Adhesive Anchors in Concrete and Commentary,” Technical Documents, 56pp.

ACI Committee 501, 1936, “Building Regulations for Reinforced Concrete,” Proceedings, Journal of American Institute, V.32, No.3, March, pp. 407- 444.

ASCE/SEI 41, 2017, “American Society of Civil Engineers, Seismic Evaluation and Retofit of Existing Buildings,” American Society of Civil Engineers, Reston, Virginia, U.S.A..

ASTM A370-17, 2017, “Standard Test Methods and Definitions for Mechanical Testing of Steel Products,” ASTM International, West Conshoshocken, Pennsylvania, 49pp.

Cheng, M-Y., Giduquio,M.B., and Dlamini, L.S., 2017, “Reexamination of Punching Shear Strength and Deformation Capacity of Corner Slab-Column Connection,” CRC, Dec., pp.8-18.

Committee on Reinforced Concrete and Building Laws, 1916, “Report of the Committee on Reinforced Concrete and Building Laws,” Proceedings, Journal of American Concrete Institute, V.12, No. 2, February, pp. 171-180.

FEMA 461, 2007, “Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components,” June, pp. 21-23.

H.E. Nilsson, and Anders Losberg, 1976, “Reinforced Concrete Corners and Joints Subjected to Bending Moment,” Journal of the structural division, June, pp.1229-1254.

Joint ACI-ASCE Committee 426, 1974, “The Shear Strength of Reinforced Concrete Members – Slabs,” Proceedings, ASCE, V. 100, No. ST8, August, pp. 1543-1591.

Joint Committee of Concrete and Reinforced Concrete, 1913, “Report on Concrete and reinforced Concrete,” Proceedings, ASTM, V. 13, pp. 224-281.

Joint Committee on Standard Specifications for Concrete and Reinforced Concrete, 1921, “Tentative Specifications for Concrete and Reinforced Concrete,” Committee Progress report, June, 73 pp.

Worsfold, B.J., and Moehle, J.P., 2019, “Laboratory Tests of Column-Foundation Moment Transfer Connections with Headed Anchors,” Department of Civil and Environmental Engineering University of California, Barkeley,Jan, 171pp.

QR CODE