簡易檢索 / 詳目顯示

研究生: 蘇文淵
Wen-yan Sue
論文名稱: 鐵-30.1錳-0.64碳合金鋼之時效相變化研究
Phase transformations during aging processes in an Fe-30.1Mn-0.64C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
雷添壽
Tien-Shou Lei
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 111
中文關鍵詞: M3CM23C6碳化物波來體方位關係
外文關鍵詞: M3C, M23C6, carbides, pearlite, orientation relationships
相關次數: 點閱:311下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究成份為鐵-30.1錳-0.64碳(wt%)的合金鋼經時效處理後的相變化情形。合金的前處理為1100℃的固溶處理,而後再於900至400℃的溫度區間進行低溫時效處理。
若時效溫度低於800℃以下時,於沃斯田體晶粒內有共存的M3C及M23C6等二種不同的碳化物。當時效溫度介於800至600℃之間時,可觀察到此二種碳化物各別於沃斯田體晶粒內形成層狀組織,此應為於固溶狀態下的過飽和的沃斯田體晶粒分解為較穩定的低溫沃斯田體晶粒及碳化物。於金相觀察此層狀組織,推斷此層狀組織是於沃斯田體基地的晶界處成核,而後往沃斯田體晶粒內成長。當時效處理溫度低於600℃以下時,發現到此二種碳化物分別與肥粒體晶粒形成的波來體的層狀組織,此為共析反應下沃斯田體晶粒分解為肥粒體與碳化物的共析波來體。值得一提的是當時效溫度低於525℃時,於沃斯田體晶粒內同時有針狀的M3C碳化物魏德曼組織出現。
沃斯田體與M3C碳化物晶粒間有下列方位關係存在,其為[011]γ//[100]c,(1 1)γ//(03 )c;或為[011]γ//[110]c,(11 )γ//(2 0)c。於波來體層狀組織中,觀察到肥粒體晶粒與碳化物有下列方位關的存在:[113]α//[110]c,(1 0)α//(031)c;[113]α//[111]c,(1 0)α//(2 0)c;或為[111]α//[113]C,(0 1)α//(2 0)C,(1 0)α//(03 )C。於魏德曼組織M3C碳化物與沃斯田體晶粒有下列的方位關係存在:其為[011]C//[001]γ,(03 )C//(2 0)γ,(300)C//(220);或為[021]C//[122]γ,(200)C//(0 2)γ。


We have studied the phase transformations of the steel with a composition of Fe-30.1 Mn-0.64 C (wt%). The steel has undergone the solution heat treatment at 1100℃ and then the aging process at temperatures ranging from 900 to 400℃.
We found the coexistence of the M3C and M23C6 carbides in the austenitic matrix at the aging temperature below 800℃. For the aging temperatures between 800 and 600℃, the coexistence of the M3C and M23C6 carbides is not only in the form of grain boundary precipitates but also in the form of lamellae of carbide and austenite grains. The lamellae structure of the carbide and austenite is due to the decomposition of the austenite phase in its as-quenched condition. For the aging temperatures below 600℃, the coexistence of the M3C and M23C6 carbides is not only in the form of grain boundary precipitates but also in the form of lamellae of carbide and ferrite grains, i.e. in the form of pearlite. The lamellae structure of the carbide and ferrite is due to the decomposition of the austenite phase below the eutectoid temperature. It is worthy to note that Widmanstatten M3C carbide formed in the austenitic matrix at the aging temperature below 525℃.
We found several orientation relationships between the grains of the lamellae. For the prcipitation of the M3C carbide in the austenitic matrix we found the following orientation relationships between the autenitic matrix and the M3C carbide: [011]γ//[100]c, (1 1)γ//(03 )c; and [011]γ//[110]c, (11 )γ//(2 0)c. In the pearlite, the oreination relationships between the ferrite and M3C carbide are as follows: [113]α//[110]c, (1 0)α//(031)c; [113]α//[111]c, (1 0)α//(2 0)c; and [111]α//[113]C, (0 1)α//(2 0)C, (1 0)α//(03 )C. For the precipitation of the Widmanstatten M3C carbide, the followings are orientation relationships between the M3C carbide and the austenitic grains: [011]C//[001]γ, (03 )C//(2 0)γ, (300)C//(220); and [021]C//[122]γ, (200)C//(0 2)γ.

第一章 前 言 1 第二章 文獻回顧 3 2.1擴散型相變化 3 2.2鐵碳系統的共析反應 4 2.3鐵錳碳系統的共析反應 5 2.4 M23C6碳化物 6 2.5 M3C碳化物 7 2.6 魏德曼組織 7 第三章 實驗方法 22 3.1合金熔煉 22 3.2合金鑄錠加工 23 3.3合金熱處理 23 3.4試片製作流程 24 3.5分析儀器 27 第四章 結果與討論 35 4.1 時效相變化 35 4.2 層狀碳化物於沃斯田體晶粒 46 4.3 波來體組織 51 4.4 層狀M3C碳化物、肥粒體與沃斯田體晶粒共存 53 4.5 碳化物與鄰近晶粒間之方位關係 54 第五章 結 論 107 參 考 文 獻 110

1. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 2/e, 2001.
2. C.R. Hutchinson, G.J. Shiflet, Scripta Materialia., 50, pp.1-5(2004).
3. C.R. Hutchinson, R.E. Hackenberg, G. J. Shiflet, Acta Mat. 52, 3565 (2004).
4. D.S. Zhou, G.J. Shiflet, Scripta Metallurgica , 27, 1215 (1992).
5. S.A. Hackey and G.J. Shiflet, Acta Metall., 35, 1017 (1987).
6. H.J. Goldschmidt and D.Sc,Interstitial Alloys.
7. H. Baker, “ASM Handbook, Vol 3, Alloy Phase Diagrams” (1992).
8. P. R. HOWELL, J. V. BEE, K. and R.W.K. Honeycombe, Metal Science., 8, PP. 1213-1221 (1979).
9. J.B Lupton,S. Murphy, And J.H. Woodhead, Metallurgical Transactions., 3, pp. 2923-2931 (1972).
10. Y.L. Lin and C.P. Chou, Scripta Metall., 27, pp. 67-70 (1992).
11. M. V. KRAL and G. SPANOS, Acta mater. Vol. 47, No. 2, pp. 711-724, 1999.
12. 陳致豪,“鐵-30錳-0.3碳合金鋼之時效相變化研究”,國立台灣科技大學,碩士論文(2008)。
13. 吳旻紘,“鐵-31錳-1.5鋁-0.6碳合金鋼之時效相變化研究”,國立台灣科技大學,碩士論文(2008)。
14. 張育仁,“鐵-30錳-1.7鋁-1碳合金鋼之時效相變化研究”,國立台灣科技大學,碩士論文(2008)。
15. C.R. Hutchinson, R.E. Hackenberg and G.J. Shiflet, Acta Mater., 52, 3565 (2004).
16. 黃振賢,金屬熱處理,文京出版社 第18版 (2000)。
17. W.F. Smith, Structure and Properties of Engineering Alloys, 2/e, 1 (1993).
18. M.H. Lewis, B. Hattersley, Acta Metall., 13,1159 (1965).
19.D.S. Zhou, G.J Shiflet, Scripta Metall. Mater., 27, 1215 (1992).
20 B. Weiss R. Stickler, Metall. Trans., 3, (1972).
21. K.H. Kuo, C.L. Jia, Acta Metall., 33, No.6, 991 (1985).
22. 蔡明欽,鋼顯微組織與性質,五南圖書股份有限公司,(2004)。
23. G. Spanos and H. I. Aaronson, Scripta METALLURGICA. Vol. 22, pp. 1537-1542, (1998)
24. M.-X. ZHANG and P. M. KELLY, Acta mater. Vol. 46, No. 13, pp. 4617-4628, (1998)
25. S. W. Thompson and P. R. Howelt, Scripta METALLURGICA Vol. 21, p p . 1353-1357, (1987)
26. K. H. YANG and W. K. CHOO, Acta metall. Mater., Vol. 42, No. 1, pp. 263-269 (1994).
27. 鮑忠興,“近代穿透式電子顯微鏡實務”,(2008)。
28. 林東一,“鐵-21錳-0.4碳合金鋼之麻田散體相變化研究”,國立台灣科技大學,碩士論文(2007)

QR CODE